

Cryptography Engineering

Cryptography Engineering

Design Principles and
Practical Applications

Niels Ferguson
Bruce Schneier

Tadayoshi Kohno

Wiley Publishing, Inc.

Cryptography Engineering: Design Principles and Practical Applications

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-47424-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010920648

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned
in this book.

../../../../../www.wiley.com/go/permissions
../../../../../www.wiley.com/default.htm

To Denise, who has made me truly happy.

—Niels Ferguson

To Karen; still, after all these years.

—Bruce Schneier

To Taryn, for making everything possible.

—Tadayoshi Kohno

Credits

Executive Editor
Carol Long

Project Editor
Tom Dinse

Production Editor
Daniel Scribner

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Publication Services, Inc.

Indexer
Robert Swanson

Cover Image
© DSGpro/istockphoto

Cover Designer
Michael E. Trent

vi

About the Authors

Niels Ferguson has spent his entire career working as a cryptographic engi-
neer. After studying mathematics in Eindhoven, he worked for DigiCash
analyzing, designing, and implementing advanced electronic payment sys-
tems that protect the privacy of the user. Later he worked as a cryptographic
consultant for Counterpane and MacFergus, analyzing hundreds of systems
and designing dozens. He was part of the team that designed the Twofish block
cipher, performed some of the best initial analysis of AES, and co-designed the
encryption system currently used by WiFi. Since 2004 he works at Microsoft
where he helped design and implement the BitLocker disk encryption system.
He currently works in the Windows cryptography team that is responsi-
ble for the cryptographic implementations in Windows and other Microsoft
products.

Bruce Schneier is an internationally renowned security technologist,
referred to by The Economist as a ‘‘security guru.’’ He is the author of eight
books—including the best sellers Beyond Fear: Thinking Sensibly about Security
in an Uncertain World, Secrets and Lies, and Applied Cryptography—as well as
hundreds of articles and essays in national and international publications,
and many more academic papers. His influential newsletter Crypto-Gram,
and his blog Schneier on Security, are read by over 250,000 people. He is a
frequent guest on television and radio, and is regularly quoted in the press
on issues surrounding security and privacy. He has testified before Congress
on multiple occasions, and has served on several government technical
committees. Schneier is the Chief Security Technology Officer of BT.

vii

viii About the Authors

Tadayoshi Kohno (Yoshi) is an assistant professor of computer science and
engineering at the University of Washington. His research focuses on improv-
ing the security and privacy properties of current and future technologies. He
conducted the initial security analysis of the Diebold AccuVote-TS electronic
voting machine source code in 2003, and has since turned his attention to
securing emerging technologies ranging from wireless implantable pacemak-
ers and defibrillators to cloud computing. He is the recipient of a National
Science Foundation CAREER Award and an Alfred P. Sloan Research Fellow-
ship. In 2007 he was awarded the MIT Technology Review TR-35 Award for
his work in applied cryptography, recognizing him as one of the world’s top
innovators under the age of 35. He received his PhD in computer science from
the University of California at San Diego.

Niels, Bruce, and Yoshi are part of the team that designed the Skein hash
function, one of the competitors in NIST’s SHA-3 competition.

Acknowledgments for
Cryptography Engineering

We are deeply indebted to the cryptography and security community at
large. This book would not have been possible without all of their efforts in
advancing the field. This book also reflects our knowledge and experience
as cryptographers, and we are deeply grateful to our peers and mentors for
helping shape our understanding of cryptography.

We thank Jon Callas, Ben Greenstein, Gordon Goetz, Alex Halderman,
John Kelsey, Karl Koscher, Jack Lloyd, Gabriel Maganis, Theresa Portzer,
Jesse Walker, Doug Whiting, Zooko Wilcox-O’Hearn, and Hussein Yapit for
providing invaluable feedback on earlier versions of this book.

Part of this book was developed and refined in an undergraduate com-
puter security course at the University of Washington. We thank all those
students, teaching assistants, and student mentors for the course. We espe-
cially thank Joshua Barr, Jonathan Beall, Iva Dermendjieva, Lisa Glendenning,
Steven Myhre, Erik Turnquist, and Heather Underwood for providing specific
comments and suggestions on the text.

We thank Melody Kadenko and Julie Svendsen for all their administrative
support throughout this process. We are indebted to Beth Friedman for all her
work copyediting this manuscript. Finally, we thank Carol Long, Tom Dinse,
and the entire Wiley team for encouraging us to prepare this book and helping
us all along the way.

We are also indebted to all the other wonderful people in our lives who
worked silently behind the scenes to make this book possible.

ix

Acknowledgments
for Practical Cryptography

(the 1st Edition)

This book is based on our collective experience over the many years we have
worked in cryptography. We are heavily indebted to all the people we worked
with. They made our work fun and helped us reach the insights that fill
this book. We would also like to thank our customers, both for providing
the funding that enabled us to continue our cryptography research and for
providing the real-world experiences necessary to write this book.

Certain individuals deserve special mention. Beth Friedman conducted an
invaluable copyediting job, and Denise Dick greatly improved our manuscript
by proofreading it. John Kelsey provided valuable feedback on the crypto-
graphic contents. And the Internet made our collaboration possible. We would
also like to thank Carol Long and the rest of the team at Wiley for bringing our
ideas to reality.

And finally, we would like to thank all of the programmers in the world who
continue to write cryptographic code and make it available, free of charge, to
the world.

x

Contents at a Glance

Preface to Cryptography Engineering xxiii

Preface to Practical Cryptography (the 1st Edition) xxvii

Part I Introduction 1

Chapter 1 The Context of Cryptography 3

Chapter 2 Introduction to Cryptography 23

Part II Message Security 41

Chapter 3 Block Ciphers 43

Chapter 4 Block Cipher Modes 63

Chapter 5 Hash Functions 77

Chapter 6 Message Authentication Codes 89

Chapter 7 The Secure Channel 99

Chapter 8 Implementation Issues (I) 115

Part III Key Negotiation 135

Chapter 9 Generating Randomness 137

Chapter 10 Primes 163

Chapter 11 Diffie-Hellman 181

Chapter 12 RSA 195

xi

xii Contents at a Glance

Chapter 13 Introduction to Cryptographic Protocols 213

Chapter 14 Key Negotiation 227

Chapter 15 Implementation Issues (II) 243

Part IV Key Management 257

Chapter 16 The Clock 259

Chapter 17 Key Servers 269

Chapter 18 The Dream of PKI 275

Chapter 19 PKI Reality 281

Chapter 20 PKI Practicalities 295

Chapter 21 Storing Secrets 301

Part V Miscellaneous 315

Chapter 22 Standards and Patents 317

Chapter 23 Involving Experts 323

Bibliography 327

Index 339

Contents

Preface to Cryptography Engineering xxiii

History xxiv
Example Syllabi xxiv
Additional Information xxvi

Preface to Practical Cryptography (the 1st Edition) xxvii

How to Read this Book xxix

Part I Introduction 1

Chapter 1 The Context of Cryptography 3
1.1 The Role of Cryptography 4
1.2 The Weakest Link Property 5
1.3 The Adversarial Setting 7
1.4 Professional Paranoia 8

1.4.1 Broader Benefits 9
1.4.2 Discussing Attacks 9

1.5 Threat Model 10
1.6 Cryptography Is Not the Solution 12
1.7 Cryptography Is Very Difficult 13
1.8 Cryptography Is the Easy Part 13
1.9 Generic Attacks 14
1.10 Security and Other Design Criteria 14

1.10.1 Security Versus Performance 14
1.10.2 Security Versus Features 17
1.10.3 Security Versus Evolving Systems 17

xiii

xiv Contents

1.11 Further Reading 18
1.12 Exercises for Professional Paranoia 18

1.12.1 Current Event Exercises 19
1.12.2 Security Review Exercises 20

1.13 General Exercises 21

Chapter 2 Introduction to Cryptography 23

2.1 Encryption 23
2.1.1 Kerckhoffs’ Principle 24

2.2 Authentication 25
2.3 Public-Key Encryption 27
2.4 Digital Signatures 29
2.5 PKI 29
2.6 Attacks 31

2.6.1 The Ciphertext-Only Model 31
2.6.2 The Known-Plaintext Model 31
2.6.3 The Chosen-Plaintext Model 32
2.6.4 The Chosen-Ciphertext Model 32
2.6.5 The Distinguishing Attack Goal 32
2.6.6 Other Types of Attack 33

2.7 Under the Hood 33
2.7.1 Birthday Attacks 33
2.7.2 Meet-in-the-Middle Attacks 34

2.8 Security Level 36
2.9 Performance 37
2.10 Complexity 37
2.11 Exercises 38

Part II Message Security 41

Chapter 3 Block Ciphers 43

3.1 What Is a Block Cipher? 43
3.2 Types of Attack 44
3.3 The Ideal Block Cipher 46
3.4 Definition of Block Cipher Security 46

3.4.1 Parity of a Permutation 49
3.5 Real Block Ciphers 50

3.5.1 DES 51
3.5.2 AES 54
3.5.3 Serpent 56

Contents xv

3.5.4 Twofish 57
3.5.5 Other AES Finalists 58
3.5.6 Which Block Cipher Should I Choose? 59
3.5.7 What Key Size Should I Use? 60

3.6 Exercises 61

Chapter 4 Block Cipher Modes 63

4.1 Padding 64
4.2 ECB 65
4.3 CBC 65

4.3.1 Fixed IV 66
4.3.2 Counter IV 66
4.3.3 Random IV 66
4.3.4 Nonce-Generated IV 67

4.4 OFB 68
4.5 CTR 70
4.6 Combined Encryption and Authentication 71
4.7 Which Mode Should I Use? 71
4.8 Information Leakage 72

4.8.1 Chances of a Collision 73
4.8.2 How to Deal With Leakage 74
4.8.3 About Our Math 75

4.9 Exercises 75

Chapter 5 Hash Functions 77

5.1 Security of Hash Functions 78
5.2 Real Hash Functions 79

5.2.1 A Simple But Insecure Hash Function 80
5.2.2 MD5 81
5.2.3 SHA-1 82
5.2.4 SHA-224, SHA-256, SHA-384, and SHA-512 82

5.3 Weaknesses of Hash Functions 83
5.3.1 Length Extensions 83
5.3.2 Partial-Message Collision 84

5.4 Fixing the Weaknesses 84
5.4.1 Toward a Short-term Fix 85
5.4.2 A More Efficient Short-term Fix 85
5.4.3 Another Fix 87

5.5 Which Hash Function Should I Choose? 87
5.6 Exercises 87

xvi Contents

Chapter 6 Message Authentication Codes 89

6.1 What a MAC Does 89
6.2 The Ideal MAC and MAC Security 90
6.3 CBC-MAC and CMAC 91
6.4 HMAC 93
6.5 GMAC 94
6.6 Which MAC to Choose? 95
6.7 Using a MAC 95
6.8 Exercises 97

Chapter 7 The Secure Channel 99

7.1 Properties of a Secure Channel 99
7.1.1 Roles 99
7.1.2 Key 100
7.1.3 Messages or Stream 100
7.1.4 Security Properties 101

7.2 Order of Authentication and Encryption 102
7.3 Designing a Secure Channel: Overview 104

7.3.1 Message Numbers 105
7.3.2 Authentication 106
7.3.3 Encryption 106
7.3.4 Frame Format 107

7.4 Design Details 107
7.4.1 Initialization 107
7.4.2 Sending a Message 108
7.4.3 Receiving a Message 109
7.4.4 Message Order 111

7.5 Alternatives 112
7.6 Exercises 113

Chapter 8 Implementation Issues (I) 115

8.1 Creating Correct Programs 116
8.1.1 Specifications 117
8.1.2 Test and Fix 118
8.1.3 Lax Attitude 119
8.1.4 So How Do We Proceed? 119

8.2 Creating Secure Software 120
8.3 Keeping Secrets 120

8.3.1 Wiping State 121
8.3.2 Swap File 122

Contents xvii

8.3.3 Caches 124
8.3.4 Data Retention by Memory 125
8.3.5 Access by Others 127
8.3.6 Data Integrity 127
8.3.7 What to Do 128

8.4 Quality of Code 128
8.4.1 Simplicity 129
8.4.2 Modularization 129
8.4.3 Assertions 130
8.4.4 Buffer Overflows 131
8.4.5 Testing 131

8.5 Side-Channel Attacks 132
8.6 Beyond this Chapter 133
8.7 Exercises 133

Part III Key Negotiation 135

Chapter 9 Generating Randomness 137

9.1 Real Random 138
9.1.1 Problems With Using Real Random Data 139
9.1.2 Pseudorandom Data 140
9.1.3 Real Random Data and prngs 140

9.2 Attack Models for a prng 141
9.3 Fortuna 142
9.4 The Generator 143

9.4.1 Initialization 145
9.4.2 Reseed 145
9.4.3 Generate Blocks 146
9.4.4 Generate Random Data 146
9.4.5 Generator Speed 147

9.5 Accumulator 147
9.5.1 Entropy Sources 147
9.5.2 Pools 148
9.5.3 Implementation Considerations 150

9.5.3.1 Distribution of Events Over Pools 150
9.5.3.2 Running Time of Event Passing 151

9.5.4 Initialization 152
9.5.5 Getting Random Data 153
9.5.6 Add an Event 154

9.6 Seed File Management 155
9.6.1 Write Seed File 156

xviii Contents

9.6.2 Update Seed File 156
9.6.3 When to Read and Write the Seed File 157
9.6.4 Backups and Virtual Machines 157
9.6.5 Atomicity of File System Updates 158
9.6.6 First Boot 158

9.7 Choosing Random Elements 159
9.8 Exercises 161

Chapter 10 Primes 163
10.1 Divisibility and Primes 163
10.2 Generating Small Primes 166
10.3 Computations Modulo a Prime 167

10.3.1 Addition and Subtraction 168
10.3.2 Multiplication 169
10.3.3 Groups and Finite Fields 169
10.3.4 The GCD Algorithm 170
10.3.5 The Extended Euclidean Algorithm 171
10.3.6 Working Modulo 2 172

10.4 Large Primes 173
10.4.1 Primality Testing 176
10.4.2 Evaluating Powers 178

10.5 Exercises 179

Chapter 11 Diffie-Hellman 181
11.1 Groups 182
11.2 Basic DH 183
11.3 Man in the Middle 184
11.4 Pitfalls 185
11.5 Safe Primes 186
11.6 Using a Smaller Subgroup 187
11.7 The Size of p 188
11.8 Practical Rules 190
11.9 What Can Go Wrong? 191
11.10 Exercises 193

Chapter 12 RSA 195
12.1 Introduction 195
12.2 The Chinese Remainder Theorem 196

12.2.1 Garner’s Formula 196
12.2.2 Generalizations 197
12.2.3 Uses 198
12.2.4 Conclusion 199

12.3 Multiplication Modulo n 199

Contents xix

12.4 RSA Defined 200
12.4.1 Digital Signatures with RSA 200
12.4.2 Public Exponents 201
12.4.3 The Private Key 202
12.4.4 The Size of n 203
12.4.5 Generating RSA Keys 203

12.5 Pitfalls Using RSA 205
12.6 Encryption 206
12.7 Signatures 209
12.8 Exercises 211

Chapter 13 Introduction to Cryptographic Protocols 213
13.1 Roles 213
13.2 Trust 214

13.2.1 Risk 215
13.3 Incentive 215
13.4 Trust in Cryptographic Protocols 217
13.5 Messages and Steps 218

13.5.1 The Transport Layer 219
13.5.2 Protocol and Message Identity 219
13.5.3 Message Encoding and Parsing 220
13.5.4 Protocol Execution States 221
13.5.5 Errors 221
13.5.6 Replay and Retries 223

13.6 Exercises 225

Chapter 14 Key Negotiation 227
14.1 The Setting 227
14.2 A First Try 228
14.3 Protocols Live Forever 229
14.4 An Authentication Convention 230
14.5 A Second Attempt 231
14.6 A Third Attempt 232
14.7 The Final Protocol 233
14.8 Different Views of the Protocol 235

14.8.1 Alice’s View 235
14.8.2 Bob’s View 236
14.8.3 Attacker’s View 236
14.8.4 Key Compromise 238

14.9 Computational Complexity of the Protocol 238
14.9.1 Optimization Tricks 239

14.10 Protocol Complexity 240

xx Contents

14.11 A Gentle Warning 241
14.12 Key Negotiation from a Password 241
14.13 Exercises 241

Chapter 15 Implementation Issues (II) 243
15.1 Large Integer Arithmetic 243

15.1.1 Wooping 245
15.1.2 Checking DH Computations 248
15.1.3 Checking RSA Encryption 248
15.1.4 Checking RSA Signatures 249
15.1.5 Conclusion 249

15.2 Faster Multiplication 249
15.3 Side-Channel Attacks 250

15.3.1 Countermeasures 251
15.4 Protocols 252

15.4.1 Protocols Over a Secure Channel 253
15.4.2 Receiving a Message 253
15.4.3 Timeouts 255

15.5 Exercises 255

Part IV Key Management 257

Chapter 16 The Clock 259
16.1 Uses for a Clock 259

16.1.1 Expiration 259
16.1.2 Unique Value 260
16.1.3 Monotonicity 260
16.1.4 Real-Time Transactions 260

16.2 Using the Real-Time Clock Chip 261
16.3 Security Dangers 262

16.3.1 Setting the Clock Back 262
16.3.2 Stopping the Clock 262
16.3.3 Setting the Clock Forward 263

16.4 Creating a Reliable Clock 264
16.5 The Same-State Problem 265
16.6 Time 266
16.7 Closing Recommendations 267
16.8 Exercises 267

Chapter 17 Key Servers 269
17.1 Basics 270
17.2 Kerberos 270

Contents xxi

17.3 Simpler Solutions 271
17.3.1 Secure Connection 272
17.3.2 Setting Up a Key 272
17.3.3 Rekeying 272
17.3.4 Other Properties 273

17.4 What to Choose 273
17.5 Exercises 274

Chapter 18 The Dream of PKI 275

18.1 A Very Short PKI Overview 275
18.2 PKI Examples 276

18.2.1 The Universal PKI 276
18.2.2 VPN Access 276
18.2.3 Electronic Banking 276
18.2.4 Refinery Sensors 277
18.2.5 Credit Card Organization 277

18.3 Additional Details 277
18.3.1 Multilevel Certificates 277
18.3.2 Expiration 278
18.3.3 Separate Registration Authority 279

18.4 Summary 280
18.5 Exercises 280

Chapter 19 PKI Reality 281

19.1 Names 281
19.2 Authority 283
19.3 Trust 284
19.4 Indirect Authorization 285
19.5 Direct Authorization 286
19.6 Credential Systems 286
19.7 The Modified Dream 288
19.8 Revocation 289

19.8.1 Revocation List 289
19.8.2 Fast Expiration 290
19.8.3 Online Certificate Verification 291
19.8.4 Revocation Is Required 291

19.9 So What Is a PKI Good For? 292
19.10 What to Choose 293
19.11 Exercises 294

xxii Contents

Chapter 20 PKI Practicalities 295
20.1 Certificate Format 295

20.1.1 Permission Language 295
20.1.2 The Root Key 296

20.2 The Life of a Key 297
20.3 Why Keys Wear Out 298
20.4 Going Further 300
20.5 Exercises 300

Chapter 21 Storing Secrets 301
21.1 Disk 301
21.2 Human Memory 302

21.2.1 Salting and Stretching 304
21.3 Portable Storage 306
21.4 Secure Token 306
21.5 Secure UI 307
21.6 Biometrics 308
21.7 Single Sign-On 309
21.8 Risk of Loss 310
21.9 Secret Sharing 310
21.10 Wiping Secrets 311

21.10.1 Paper 311
21.10.2 Magnetic Storage 312
21.10.3 Solid-State Storage 313

21.11 Exercises 313

Part V Miscellaneous 315

Chapter 22 Standards and Patents 317
22.1 Standards 317

22.1.1 The Standards Process 317
22.1.1.1 The Standard 319
22.1.1.2 Functionality 319
22.1.1.3 Security 320

22.1.2 SSL 320
22.1.3 AES: Standardization by Competition 321

22.2 Patents 322

Chapter 23 Involving Experts 323

Bibliography 327

Index 339

Preface to Cryptography
Engineering

Most books cover what cryptography is—what current cryptographic designs
are and how existing cryptographic protocols, like SSL/TLS, work. Bruce
Schneier’s earlier book, Applied Cryptography, is like this. Such books serve
as invaluable references for anyone working with cryptography. But such
books are also one step removed from the needs of cryptography and security
engineers in practice. Cryptography and security engineers need to know
more than how current cryptographic protocols work; they need to know how
to use cryptography.

To know how to use cryptography, one must learn to think like a cryp-
tographer. This book is designed to help you achieve that goal. We do this
through immersion. Rather than broadly discuss all the protocols one might
encounter in cryptography, we dive deeply into the design and analysis of
specific, concrete protocols. We walk you—hand-in-hand—through how we
go about designing cryptographic protocols. We share with you the reasons
we make certain design decisions over others, and point out potential pitfalls
along the way.

By learning how to think like a cryptographer, you will also learn how to
be a more intelligent user of cryptography. You will be able to look at existing
cryptography toolkits, understand their core functionality, and know how
to use them. You will also better understand the challenges involved with
cryptography, and how to think about and overcome those challenges.

This book also serves as a gateway to learning about computer security.
Computer security is, in many ways, a superset of cryptography. Both com-
puter security and cryptography are about designing and evaluating objects
(systems or algorithms) intended to behave in certain ways even in the presence

xxiii

xxiv Preface to Cryptography Engineering

of an adversary. In this book, you will learn how to think about the adversary
in the context of cryptography. Once you know how to think like adversaries,
you can apply that mindset to the security of computer systems in general.

History

This book began with Practical Cryptography by Niels Ferguson and Bruce
Schneier, and evolved with the addition of Tadayoshi Kohno—Yoshi—as
an author. Yoshi is a professor of computer science and engineering at the
University of Washington, and also a past colleague of Niels and Bruce. Yoshi
took Practical Cryptography and revised it to be suitable for classroom use and
self-study, while staying true to the goals and themes of Niels’s and Bruce’s
original book.

Example Syllabi

There are numerous ways to read this book. You can use it as a self-study
guide for applied cryptographic engineering, or you can use it in a course. A
quarter- or semester-long course on computer security might use this book as
the foundation for a 6-week intensive unit on cryptography. This book could
also serve as the foundation for a full quarter- or semester-long course on
cryptography, augmented with additional advanced material if time allows.
To facilitate classroom use, we present several possible syllabi below.

The following syllabus is appropriate for a 6-week intensive unit on cryp-
tography. For this 6-week unit, we assume that the contents of Chapter 1 are
discussed separately, in the broader context of computer security in general.

Week 1: Chapters 2, 3, and 4;

Week 2: Chapters 5, 6, and 7;

Week 3: Chapters 8, 9, and 10;

Week 4: Chapters 11, 12, and 13;

Week 5: Chapters 14, 15, 16, and 17;

Week 6: Chapters 18, 19, 20, and 21.

The following syllabus is for a 10-week quarter on cryptography engineering.

Week 1: Chapters 1 and 2;

Week 2: Chapters 3 and 4;

Preface to Cryptography Engineering xxv

Week 3: Chapters 5 and 6;

Week 4: Chapters 7 and 8;

Week 5: Chapters 9 and 10;

Week 6: Chapters 11 and 12;

Week 7: Chapters 13 and 14;

Week 8: Chapters 15, 16, and 17;

Week 9: Chapters 18, 19, 20;

Week 10: Chapter 21.

The following syllabus is appropriate for schools with 12-week semesters. It
can also be augmented with advanced materials in cryptography or computer
security for longer semesters.

Week 1: Chapters 1 and 2;

Week 2: Chapters 3 and 4;

Week 3: Chapters 5 and 6;

Week 4: Chapter 7;

Week 5: Chapters 8 and 9;

Week 6: Chapters 9 (continued) and 10;

Week 7: Chapters 11 and 12;

Week 8: Chapters 13 and 14;

Week 9: Chapters 15 and 16;

Week 10: Chapters 17 and 18;

Week 11: Chapters 19 and 20;

Week 12: Chapter 21.

This book has several types of exercises, and we encourage readers to com-
plete as many of these exercises as possible. There are traditional exercises
designed to test your understanding of the technical properties of cryptog-
raphy. However, since our goal is to help you learn how to think about
cryptography in real systems, we have also introduced a set of non-traditional
exercises (see Section 1.12). Cryptography doesn’t exist in isolation; rather,
cryptography is only part of a larger ecosystem consisting of other hardware

xxvi Preface to Cryptography Engineering

and software systems, people, economics, ethics, cultural differences, politics,
law, and so on. Our non-traditional exercises are explicitly designed to force
you to think about cryptography in the context of real systems and the sur-
rounding ecosystem. These exercises will provide you with an opportunity to
directly apply the contents of this book as thought exercises to real systems.
Moreover, by weaving these exercises together throughout this book, you will
be able to see your knowledge grow as you progress from chapter to chapter.

Additional Information

While we strove to make this book as error-free as possible, errors have
undoubtedly crept in. We maintain an online errata list for this book. The
procedure for using this errata list is below.

Before reading this book, go to http://www.schneier.com/ce.html and
download the current list of corrections.

If you find an error in the book, please check to see if it is already on the
list.

If it is not on the list, please alert us at cryptographyengineering

@schneier.com. We will add the error to the list.

We wish you a wonderful journey through cryptography engineering.
Cryptography is a wonderful and fascinating topic. We hope you learn a great
deal from this book, and come to enjoy cryptography engineering as much as
we do.

October 2009 Niels Ferguson
Redmond, Washington
USA
niels@ferguson.net

Bruce Schneier
Minneapolis, Minnesota
USA
schneier@schneier.com

Tadayoshi Kohno
Seattle, Washington
USA
yoshi@cs.washington.edu

../../../../../www.schneier.com/ce.html
mailto://cryptographyengineering@schneier.com
mailto://cryptographyengineering@schneier.com
mailto://schneier@schneier.com
mailto://niels@ferguson.net
mailto://yoshi@cs.washington.edu

Preface to Practical
Cryptography (the 1st Edition)

In the past decade, cryptography has done more to damage the security
of digital systems than it has to enhance it. Cryptography burst onto the
world stage in the early 1990s as the securer of the Internet. Some saw
cryptography as a great technological equalizer, a mathematical tool that
would put the lowliest privacy-seeking individual on the same footing as
the greatest national intelligence agencies. Some saw it as the weapon that
would bring about the downfall of nations when governments lost the ability
to police people in cyberspace. Others saw it as the perfect and terrifying
tool of drug dealers, terrorists, and child pornographers, who would be able
to communicate in perfect secrecy. Even those with more realistic attitudes
imagined cryptography as a technology that would enable global commerce
in this new online world.

Ten years later, none of this has come to pass. Despite the prevalence of
cryptography, the Internet’s national borders are more apparent than ever.
The ability to detect and eavesdrop on criminal communications has more
to do with politics and human resources than mathematics. Individuals still
don’t stand a chance against powerful and well-funded government agencies.
And the rise of global commerce had nothing to do with the prevalence of
cryptography.

For the most part, cryptography has done little more than give Internet users
a false sense of security by promising security but not delivering it. And that’s
not good for anyone except the attackers.

The reasons for this have less to do with cryptography as a mathematical
science, and much more to do with cryptography as an engineering discipline.
We have developed, implemented, and fielded cryptographic systems over the

xxvii

xxviii Preface to Practical Cryptography (the 1st Edition)

past decade. What we’ve been less effective at is converting the mathematical
promise of cryptographic security into a reality of security. As it turns out, this
is the hard part.

Too many engineers consider cryptography to be a sort of magic security
dust that they can sprinkle over their hardware or software, and which will
imbue those products with the mythical property of ‘‘security.’’ Too many
consumers read product claims like ‘‘encrypted’’ and believe in that same
magic security dust. Reviewers are no better, comparing things like key lengths
and on that basis, pronouncing one product to be more secure than another.

Security is only as strong as the weakest link, and the mathematics of cryp-
tography is almost never the weakest link. The fundamentals of cryptography
are important, but far more important is how those fundamentals are imple-
mented and used. Arguing about whether a key should be 112 bits or 128
bits long is rather like pounding a huge stake into the ground and hoping the
attacker runs right into it. You can argue whether the stake should be a mile
or a mile-and-a-half high, but the attacker is simply going to walk around the
stake. Security is a broad stockade: it’s the things around the cryptography
that make the cryptography effective.

The cryptographic books of the last decade have contributed to that aura of
magic. Book after book extolled the virtues of, say, 112-bit triple-DES without
saying much about how its keys should be generated or used. Book after book
presented complicated protocols for this or that without any mention of the
business and social constraints within which those protocols would have to
work. Book after book explained cryptography as a pure mathematical ideal,
unsullied by real-world constraints and realities. But it’s exactly those real-
world constraints and realities that mean the difference between the promise
of cryptographic magic and the reality of digital security.

Practical Cryptography is also a book about cryptography, but it’s a book
about sullied cryptography. Our goal is to explicitly describe the real-world
constraints and realities of cryptography, and to talk about how to engineer
secure cryptographic systems. In some ways, this book is a sequel to Bruce
Schneier’s first book, Applied Cryptography, which was first published ten years
ago. But while Applied Cryptography gives a broad overview of cryptography
and the myriad possibilities cryptography can offer, this book is narrow and
focused. We don’t give you dozens of choices; we give you one option and
tell you how to implement it correctly. Applied Cryptography displays the
wondrous possibilities of cryptography as a mathematical science—what is
possible and what is attainable; Practical Cryptography gives concrete advice to
people who design and implement cryptographic systems.

Practical Cryptography is our attempt to bridge the gap between the promise
of cryptography and the reality of cryptography. It’s our attempt to teach
engineers how to use cryptography to increase security.

Preface to Practical Cryptography (the 1st Edition) xxix

We’re qualified to write this book because we’re both seasoned cryptogra-
phers. Bruce is well known from his books Applied Cryptography and Secrets
and Lies, and from his newsletter ‘‘Crypto-Gram.’’ Niels Ferguson cut his cryp-
tographic teeth building cryptographic payment systems at the CWI (Dutch
National Research Institute for Mathematics and Computer Science) in Ams-
terdam, and later at a Dutch company called DigiCash. Bruce designed the
Blowfish encryption algorithm, and both of us were on the team that designed
Twofish. Niels’s research led to the first example of the current generation of
efficient anonymous payment protocols. Our combined list of academic papers
runs into three digits.

More importantly, we both have extensive experience in designing and
building cryptographic systems. From 1991 to 1999, Bruce’s consulting com-
pany Counterpane Systems provided design and analysis services to some
of the largest computer and financial companies in the world. More recently,
Counterpane Internet Security, Inc., has provided Managed Security Monitor-
ing services to large corporations and government agencies worldwide. Niels
also worked at Counterpane before founding his own consulting company,
MacFergus. We’ve seen cryptography as it lives and breathes in the real world,
as it flounders against the realities of engineering or even worse, against the
realities of business. We’re qualified to write this book because we’ve had to
write it again and again for our consulting clients.

How to Read this Book

Practical Cryptography is more a narrative than a reference. It follows the
design of a cryptographic system from the specific algorithm choices, out-
wards through concentric rings to the infrastructure required to make it work.
We discuss a single cryptographic problem—one of establishing a means for
two people to communicate securely—that’s at the heart of almost every cryp-
tographic application. By focusing on one problem and one design philosophy
for solving that problem, it is our belief that we can teach more about the
realities of cryptographic engineering.

We think cryptography is just about the most fun you can have with
mathematics. We’ve tried to imbue this book with that feeling of fun, and we
hope you enjoy the results. Thanks for coming along on our ride.

Niels Ferguson
Bruce Schneier
January 2003

P a r t

I
Introduction

In This Part

Chapter 1: The Context of Cryptography

Chapter 2: Introduction to Cryptography

C H A P T E R

1

The Context of Cryptography

Cryptography is the art and science of encryption. At least, that is how it
started out. Nowadays it is much broader, covering authentication, digital
signatures, and many more elementary security functions. It is still both an
art and a science: to build good cryptographic systems requires a scientific
background and a healthy dose of the black magic that is a combination of
experience and the right mentality for thinking about security problems. This
book is designed to help you cultivate these critical ingredients.

Cryptography is an extremely varied field. At a cryptography research
conference, you can encounter a wide range of topics, including computer
security, higher algebra, economics, quantum physics, civil and criminal law,
statistics, chip designs, extreme software optimization, politics, user interface
design, and everything in between. In some ways, this book concentrates on
only a very small part of cryptography: the practical side. We aim to teach you
how to implement cryptography in real-world systems. In other ways, this
book is much broader, helping you gain experience in security engineering
and nurturing your ability to think about cryptography and security issues
like a security professional. These broader lessons will help you successfully
tackle security challenges, whether directly related to cryptography or not.

The variety in this field is what makes cryptography such a fascinating area
to work in. It is really a mixture of widely different fields. There is always
something new to learn, and new ideas come from all directions. It is also one
of the reasons why cryptography is so difficult. It is impossible to understand
it all. There is nobody in the world who knows everything about cryptography.
There isn’t even anybody who knows most of it. We certainly don’t know

3

4 Part I ■ Introduction

everything there is to know about the subject of this book. So here is your
first lesson in cryptography: keep a critical mind. Don’t blindly trust anything,
even if it is in print. You’ll soon see that having this critical mind is an essential
ingredient of what we call ‘‘professional paranoia.’’

1.1 The Role of Cryptography

Cryptography by itself is fairly useless. It has to be part of a much larger
system. We like to compare cryptography to locks in the physical world. A
lock by itself is a singularly useless thing. It needs to be part of a much
larger system. This larger system can be a door on a building, a chain, a safe,
or something else. This larger system even extends to the people who are
supposed to use the lock: they need to remember to actually lock it and to not
leave the key around for anyone to find. The same goes for cryptography: it is
just a small part of a much larger security system.

Even though cryptography is only a small part of the security system, it
is a very critical part. Cryptography is the part that has to provide access to
some people but not to others. This is very tricky. Most parts of the security
system are like walls and fences in that they are designed to keep everybody
out. Cryptography takes on the role of the lock: it has to distinguish between
‘‘good’’ access and ‘‘bad’’ access. This is much more difficult than just keeping
everybody out. Therefore, the cryptography and its surrounding elements
form a natural point of attack for any security system.

This does not imply that cryptography is always the weak point of a system.
In some cases, even bad cryptography can be much better than the rest of the
security system. You have probably seen the door to a bank vault, at least in
the movies. You know, 10-inch-thick, hardened steel, with huge bolts to lock
it in place. It certainly looks impressive. We often find the digital equivalent
of such a vault door installed in a tent. The people standing around it are
arguing over how thick the door should be, rather than spending their time
looking at the tent. It is all too easy to spend hours arguing over the exact
key length of cryptographic systems, but fail to notice or fix buffer overflow
vulnerabilities in a Web application. The result is predictable: the attackers find
a buffer overflow and never bother attacking the cryptography. Cryptography
is only truly useful if the rest of the system is also sufficiently secure against
the attackers.

There are, however, reasons why cryptography is important to get right,
even in systems that have other weaknesses. Different weaknesses are useful
to different attackers in different ways. For example, an attacker who breaks
the cryptography has a low chance of being detected. There will be no traces
of the attack, since the attacker’s access will look just like a ‘‘good’’ access. This

Chapter 1 ■ The Context of Cryptography 5

is comparable to a real-life break-in. If the burglar uses a crowbar to break in,
you will at least see that a break-in has occurred. If the burglar picks the lock,
you might never find out that a burglary occurred. Many modes of attack leave
traces, or disturb the system in some way. An attack on the cryptography can
be fleeting and invisible, allowing the attacker to come back again and again.

1.2 The Weakest Link Property

Print the following sentence in a very large font and paste it along the top of
your monitor.

A security system is only as strong as its weakest link.

Look at it every day, and try to understand the implications. The weakest
link property is one of the main reasons why security systems are so fiend-
ishly hard to get right.

Every security system consists of a large number of parts. We must assume
that our opponent is smart and that he is going to attack the system at the
weakest part. It doesn’t matter how strong the other parts are. Just as in a
chain, the weakest link will break first. It doesn’t matter how strong the other
links in the chain are.

Niels used to work in an office building where all the office doors were
locked every night. Sounds very safe, right? The only problem was that the
building had a false ceiling. You could lift up the ceiling panels and climb over
any door or wall. If you took out the ceiling panels, the whole floor looked
like a set of tall cubicles with doors on them. And these doors had locks. Sure,
locking the doors made it slightly harder for the burglar, but it also made it
harder for the security guard to check the offices during his nightly rounds.
It isn’t clear at all whether the overall security was improved or made worse
by locking the doors. In this example, the weakest link property prevented
the locking of the doors from being very effective. It might have improved
the strength of a particular link (the door), but there was another link (the
ceiling) that was still weak. The overall effect of locking the doors was at best
very small, and its negative side effects could well have exceeded its positive
contribution.

To improve the security of a system, we must improve the weakest link.
But to do that, we need to know what the links are and which ones are weak.
This is best done using a hierarchical tree structure. Each part of a system has
multiple links, and each link in turn has sublinks. We can organize the links
into what we call an attack tree [113]. We give an example in Figure 1.1. Let’s
say that we want to break into a bank vault. The first-level links are the walls,
the floor, the door, and the ceiling. Breaking through any one of them gets

6 Part I ■ Introduction

us into the vault. Let’s look at the door in more detail. The door system has
its own links: the connection between the door frame and the walls, the lock,
the door itself, the bolts that keep the door in the door frame, and the hinges.
We could continue by discussing individual lines of attack on the lock, one of
which is to acquire a key, which in turn leads to a whole tree about stealing
the key in some way.

through
ceiling

through
walls

through
door

through
floor

through
connection
door-wall

defeat
lock

break
door

disable
bolts

break
hinge

enter
vault

Figure 1.1: Example attack tree for a vault

We can analyze each link and split it up into other links until we are left
with single components. Doing this for a real system can be an enormous
amount of work. If we were concerned about an attacker stealing the diamonds
stored in the vault, then Figure 1.1 is also just one piece of a larger attack tree;
an attacker could trick an employee into removing the diamonds from the
vault and steal them once removed. Attack trees provide valuable insight as
to possible lines of attack. Trying to secure a system without first doing such
an analysis very often leads to useless work. In this book, we work only on
limited components—the ones that can be solved with cryptography—and
we will not explicitly talk about their attack trees. But you should be certain
to understand how to use an attack tree to study a larger system and to assess
the role of cryptography in that system.

The weakest link property affects our work in many ways. For example, it
is tempting to assume that users have proper passwords, but in practice they
don’t. They often choose simple short passwords. Users may go to almost any
length not to be bothered by security systems. Writing a password on a sticky
note and attaching it to their monitor is just one of many things they might do.
You can never ignore issues like this because they always affect the end result.
If you design a system that gives users a new 12-digit random password every
week, you can be sure they will stick it on their monitors. This weakens an
already weak link, and is bad for the overall security of the system.

Chapter 1 ■ The Context of Cryptography 7

Strictly speaking, strengthening anything but the weakest link is useless.
In practice, things are not so clear-cut. The attacker may not know what the
weakest link is and attack a slightly stronger one. The weakest link may be
different for different types of attackers. The strength of any link depends on
the attacker’s skill and tools and access to the system. The link an attacker
might exploit may also depend on the attacker’s goals. So which link is the
weakest depends on the situation. It is therefore worthwhile to strengthen any
link that could in a particular situation be the weakest. Moreover, it’s worth
strengthening multiple links so that if one link does fail, the remaining links
can still provide security—a property known as defense in depth.

1.3 The Adversarial Setting

One of the biggest differences between security systems and almost any other
type of engineering is the adversarial setting. Most engineers have to contend
with problems like storms, heat, and wear and tear. All of these factors affect
designs, but their effect is fairly predictable to an experienced engineer. Not
so in security systems. Our opponents are intelligent, clever, malicious, and
devious; they’ll do things nobody had ever thought of before. They don’t play
by the rules, and they are completely unpredictable. That is a much harder
environment to work in.

Many of us remember the film in which the Tacoma Narrows suspension
bridge wobbles and twists in a steady wind until it breaks and falls into the
water. It is a famous piece of film, and the collapse taught bridge engineers
a valuable lesson. Slender suspension bridges can have a resonance mode in
which a steady wind can cause the whole structure to oscillate, and finally
break. How do they prevent the same thing from happening with newer
bridges? Making the bridge significantly stronger to resist the oscillations
would be too expensive. The most common technique used is to change the
aerodynamics of the bridge. The deck is made thicker, which makes it much
harder for the wind to push up and down on the deck. Sometimes railings are
used as spoilers to make the bridge deck behave less like a wing that lifts up in
the wind. This works because wind is fairly predictable, and does not change
its behavior in an active attempt to destroy the bridge.

A security engineer has to take a malicious wind into account. What if
the wind blows up and down instead of just from the side, and what if it
changes directions at the right frequency for the bridge to resonate? Bridge
engineers will dismiss this kind of talk out of hand: ‘‘Don’t be silly, the wind
doesn’t blow that way.’’ That certainly makes the bridge engineers’ jobs much
easier. Cryptographers don’t have that luxury. Security systems are attacked
by clever and malicious attackers. We have to consider all types of attack.

8 Part I ■ Introduction

The adversarial setting is a very harsh environment to work in. There are
no rules in this game, and the deck is stacked against us. We talk about an
‘‘attacker’’ in an abstract sense, but we don’t know who she is, what she
knows, what her goal is, when she will attack, or what her resources are. Since
the attack may occur long after we design the system, she has the advantage
of five or ten years’ more research, and can use technology of the future
that is not available to us. And with all those advantages, she only has to
find a single weak spot in our system, whereas we have to protect all areas.
Still, our mission is to build a system that can withstand it all. This creates
a fundamental imbalance between the attacker of a system and the defender.
This is also what makes the world of cryptography so exciting.

1.4 Professional Paranoia

To work in this field, you have to become devious yourself. You have to think
like a malicious attacker to find weaknesses in your own work. This affects
the rest of your life as well. Everybody who works on practical cryptographic
systems has experienced this. Once you start thinking about how to attack
systems, you apply that to everything around you. You suddenly see how
you could cheat the people around you, and how they could cheat you.
Cryptographers are professional paranoids. It is important to separate your
professional paranoia from your real-world life so as to not go completely
crazy. Most of us manage to preserve some sanity . . . we think.1 In fact, we
think that this practical paranoia can be a lot of fun. Developing this mindset
will help you observe things about systems and your environment that most
other people don’t notice.

Paranoia is very useful in this work. Suppose you work on an electronic pay-
ment system. There are several parties involved in this system: the customer,
the merchant, the customer’s bank, and the merchant’s bank. It can be very
difficult to figure out what the threats are, so we use the paranoia model. For
each participant, we assume that everybody else is part of a big conspiracy to
defraud this one participant. And we also assume that the attacker might have
any number of other goals, such as compromising the privacy of a participant’s
transactions or denying a participant’s access to the system at a critical time.
If your cryptographic system can survive the paranoia model, it has at least a
fighting chance of surviving in the real world.

We will interchangeably refer to professional paranoia and the paranoia
model as the security mindset.

1But remember: the fact that you are not paranoid doesn’t mean they are not out to get you or
compromise your system.

Chapter 1 ■ The Context of Cryptography 9

1.4.1 Broader Benefits
Once you develop a sense of professional paranoia, you will never look at
systems the same way. This mindset will benefit you throughout your career,
regardless of whether you become a cryptographer or not. Even if you don’t
become a cryptographer, you may someday find yourself working on the
design, implementation, or evaluation of new computer software or hardware
systems. If you have the security mindset, then you will be constantly thinking
about what an attacker might try to do to your system. This will nicely position
you to identify potential security problems with these systems early. You may
not always be able to fix all of the security problems by yourself, but that’s
all right. The most important thing is to realize that a security problem might
exist. Once you do that, it becomes a straightforward task to find others to
help you fix the problem. But without the security mindset, you might never
realize that your system has security problems and, therefore, you obviously
can’t protect against those problems in a principled way.

Technologies also change very rapidly. This means that some hot security
mechanisms of today may be outdated in 10 or 15 years. But if you can learn
how to think about security issues and have an appreciation for adversaries,
then you can take that security mindset with you for the rest of your life and
apply it to new technologies as they evolve.

1.4.2 Discussing Attacks
Professional paranoia is an essential tool of the trade. With any new system
you encounter, the first thing you think of is how you can break it. The sooner
you find a weak spot, the sooner you learn more about the new system.
Nothing is worse than working on a system for years, only to have somebody
come up and say: ‘‘But how about if I attack it this way . . . ?’’ You really don’t
want to experience that ‘‘Oops’’ moment.

In this field, we make a very strict distinction between attacking somebody’s
work and attacking somebody personally. Any work is fair game. If somebody
proposes something, it is an automatic invitation to attack it. If you break one
of our systems, we will applaud the attack and tell everybody about it.2 We
constantly look for weaknesses in any system because that is the only way to
learn how to make more secure systems. This is one thing you will have to learn:
an attack on your work is not an attack on you. Also, when you attack a system,
always be sure to criticize the system, not the designers. Personal attacks in
cryptography will get you the same negative response as anywhere else.

But be aware that this acceptance of attacks may not extend to everyone
working on a system—particularly if they are not familiar with the field

2Depending on the attack, we might kick ourselves for not finding the weakness ourselves, but
that is a different issue.

10 Part I ■ Introduction

of cryptography and computer security. Without experience in the security
community, it is very easy for people to take criticism of their work as a
personal attack, with all the resulting problems. It is therefore important to
develop a diplomatic approach, even if it makes it initially difficult to get the
message across. Being too vague and saying something like ‘‘There might be
some issues with the security aspects’’ may not be productive, since it may
get a noncommittal response like ‘‘Oh, we’ll fix it,’’ even if the basic design is
fundamentally flawed. Experience has shown us that the best way to get the
message across technically is to be specific and say something like ‘‘If you do
this and this, then an attacker could do this,’’ but such a statement may be
felt as harsh by the recipient. Instead, you could begin by asking, ‘‘Have you
thought about what might happen if someone did this?’’ You could then ease
the designers of the system into a discussion of the attack itself. You might
also consider complimenting them on the remaining strengths of their system,
observe the challenges to building secure systems, and offer to help them fix
their security problems if possible.

So the next time someone attacks the security of your system, try not to
take it personally. And make sure that when you attack a system, you only
focus on the technology, you don’t criticize the people behind it, and you are
sensitive to the fact that the designers may not be familiar with the culture of
constructive criticism in the security community.

1.5 Threat Model

Every system can be attacked. There is no such thing as perfect security. The
whole point of a security system is to provide access to some people and not
to others. In the end, you will always have to trust some people in some way,
and these people may still be able to attack your system.

It is very important to know what you are trying to protect, and against
whom you wish to protect it. What are the assets of value? What are the
threats? These sound like simple questions, but it turns out to be a much
harder problem than you’d think. Since there’s really no such thing as perfect
security, when we say that a system is ‘‘secure,’’ what we are really saying is
that it provides a sufficient level of security for our assets of interest against
certain classes of threats. We need to assess the security of a system under the
designated threat model.

Most companies protect their LAN with a firewall, but many of the really
harmful attacks are performed by insiders, and a firewall does not protect
against insiders at all. It doesn’t matter how good your firewall is; it won’t
protect against a malicious employee. This is a mismatch in the threat model.

Another example is SET. SET is a protocol for online shopping with a credit
card. One of its features is that it encrypts the credit card number so that

Chapter 1 ■ The Context of Cryptography 11

an eavesdropper cannot copy it. That is a good idea. A second feature—that
not even the merchant is shown the customer’s credit-card number—works
less well.

The second property fails because some merchants use the credit card
number to look up customer records or to charge surcharges. Entire commerce
systems have been based on the assumption that the merchant has access to
the customer’s credit card number. And then SET tries to take this access away.
When Niels worked with SET in the past, there was an option for sending the
credit card number twice—once encrypted to the bank, and once encrypted
to the merchant so that the merchant would get it too. (We have not verified
whether this is still the case.)

But even with this option, SET doesn’t solve the whole problem. Most credit
card numbers that are stolen are not intercepted while in transit between the
consumer and the merchant. They are stolen from the merchant’s database.
SET only protects the information while it is in transit.

SET makes another, more serious, mistake. Several years ago Niels’s bank
in the Netherlands offered a SET-enabled credit card. The improved security
for online purchases was one of the major selling points. But this turned
out to be a bogus argument. It is quite safe to order online with a normal
credit card. Your credit card number is not a secret. You give it to every
salesperson you buy something from. The real secret is your signature. That is
what authorizes the transaction. If a merchant leaks your credit card number,
then you might get spurious charges, but as long as there is no handwritten
signature (or PIN code) there is no indication of acceptance of the transac-
tion, and therefore no legal basis for the charge. In most jurisdictions you
simply complain and get your money back. There might be some inconve-
nience involved in getting a new credit card with a different number, but
that is the extent of the user’s exposure. With SET, the situation is different.
SET uses a digital signature (explained in Chapter 12) by the user to autho-
rize the transaction. That is obviously more secure than using just a credit
card number. But think about it. Now the user is liable for any transaction
performed by the SET software on his PC. This opens the user up to huge
liabilities. What if a virus infects his PC and subverts the SET software?
The software might sign the wrong transaction, and cause the user to lose
money.

So from the user’s point of view, SET offers worse security than a plain
credit card. Plain credit cards are safe for online shopping because the user can
always get his money back from a fraudulent transaction. Using SET increases
the user’s exposure. So although the overall payment system is better secured,
SET transfers the residual risk from the merchant and/or bank to the user. It
changes the user’s threat model from ‘‘It will only cost me money if they forge
my signature well enough’’ to ‘‘It will only cost me money if they forge my
signature well enough, or if a clever virus infects my PC.’’

12 Part I ■ Introduction

Threat models are important. Whenever you start on a cryptographic secu-
rity project, sit down and think about what your assets are and against which
threats you wish to protect them. A mistake in your threat analysis can ren-
der an entire project meaningless. We won’t talk a lot about threat analysis
in this book, as we are discussing the limited area of cryptography here, but
in any real system you should never forget the threat analysis for each of the
participants.

1.6 Cryptography Is Not the Solution

Cryptography is not the solution to your security problems. It might be
part of the solution, or it might be part of the problem. In some situations,
cryptography starts out by making the problem worse, and it isn’t at all clear
that using cryptography is an improvement. The correct use of cryptography
must therefore be carefully considered. Our previous discussion of SET is an
example of this.

Suppose you have a secret file on your computer that you don’t want others
to read. You could just protect the file system from unauthorized access. Or
you could encrypt the file and protect the key. The file is now encrypted, and
human nature being what it is, you might not protect the file very well. You
might store it on a USB stick and not worry if that USB stick is lost or stolen.
But where can you store the key? A good key is too long to remember. Some
programs store the key on the disk—the very place the secret file was stored
in the first place. But an attack that could recover the secret file in the first
situation can now recover the key, which in turn can be used to decrypt the file.
Further, we have introduced a new point of attack: if the encryption system is
insecure or the amount of randomness in the key is too low, then the attacker
could break the encryption system itself. Ultimately, the overall security has
been reduced. Therefore, simply encrypting the file is not the entire solution.
It might be part of the solution, but by itself it can create additional issues that
need to be solved.

Cryptography has many uses. It is a crucial part of many good security
systems. It can also make systems weaker when used in inappropriate ways.
In many situations, it provides only a feeling of security, but no actual security.
It is tempting to stop there, since that is what most users want: to feel secure.
Using cryptography in this manner can also make a system comply with
certain standards and regulations, even if the resulting system isn’t actually
secure. In situations like this (which are all too common), any voodoo that the
customer believes in would provide the same feeling of security and would
work just as well.

Chapter 1 ■ The Context of Cryptography 13

1.7 Cryptography Is Very Difficult

Cryptography is fiendishly difficult. Even seasoned experts design systems that
are broken a few years later. This is common enough that we are not surprised
when it happens. The weakest-link property and the adversarial setting con-
spire to make life for a cryptographer—or any security engineer—very hard.

Another significant problem is the lack of testing. There is no known way of
testing whether a system is secure. In the security and cryptography research
community, for example, what we try to do is publish our systems and then
get other experts to look at them. Note that the second part is not automatic;
there are many published systems that nobody has even glanced at after they
were published, and the conference and journal review process alone isn’t
sufficient to preemptively identify all potential security issues with a system
prior to publication. Even with many seasoned eyes looking at the system,
security deficiencies may not be uncovered for years.

There are some small areas of cryptography that we as a community
understand rather well. This doesn’t mean they are simple; it just means that
we have been working on them for a few decades now, and we think we know
the critical issues. This book is mostly about those areas. What we have tried to
do in this book is to collect the information that we have about designing and
building practical cryptographic systems, and bring it all together in one place.

For some reason, many people still seem to think that cryptography is easy.
It is not. This book will help you understand the challenges to cryptography
engineering and help propel you on the road to overcoming those challenges.
But don’t go out and build a new cryptographic voting machine or other critical
security system right away. Instead, take what you learn here and work with
others—especially seasoned cryptography experts—to design and analyze
your new system. Even we, despite our years of experience in cryptography
and security, ask other cryptography and security experts to review the
systems that we design.

1.8 Cryptography Is the Easy Part

Even though cryptography itself is difficult, it is still one of the easy parts
of a security system. Like a lock, a cryptographic component has fairly
well-defined boundaries and requirements. An entire security system is much
more difficult to clearly define, since it involves many more aspects. Issues like
the organizational procedures used to grant access and the procedures used
to check that the other procedures are being followed are much harder to deal

14 Part I ■ Introduction

with, as the situation is always changing. Another huge problem in computer
security is the quality of much software. Security software cannot be effective
if the software on the machine contains numerous bugs that lead to security
holes.

Cryptography is the easy part, because there are people who know how
to do a reasonably good job. There are experts for hire who will design a
cryptographic system for you. They are not cheap, and they are often a pain
to work with. They insist on changing other parts of the system to achieve
the desired security properties. Still, for all practical purposes, cryptography
poses problems that we know how to solve, and this book will give you a
sense for how to go about solving them.

The rest of the security system contains problems we don’t know how
to solve. Key management and key storage is crucial to any cryptographic
system, but most computers have no secure place to store a key. Poor software
quality is another problem. Network security is even harder. And when you
add users to the mix, the problem becomes harder still.

1.9 Generic Attacks

It is also important to realize that some security problems can’t be solved.
There are black box or generic attacks against certain types of systems. A
classic example of this is the analog hole for digital rights management
(DRM) systems. These DRM systems try to control the copying of digital mate-
rials, such as a picture, song, movie, or book. But no technology—cryptography
or otherwise—can protect against a generic attack outside the system. For
example, an attacker could take a photo of a computer screen to create a copy
of the picture, or use a microphone to re-record the song.

It is important to identify what the generic attacks against a system are.
Otherwise, you might spend a lot of time trying to fix an unfixable problem.
Similarly, when someone claims that they’ve secured a system against a generic
attack, you know to be skeptical.

1.10 Security and Other Design Criteria

Security is never the only design criterion for a system. Instead, security is but
one of many criteria.

1.10.1 Security Versus Performance
The bridge over the Firth of Forth in Scotland has to be seen to be believed.
A 19th-century engineering marvel, it is mind-numbingly large (and there-
fore expensive) compared to the trains that cross it. It is so incredibly

Chapter 1 ■ The Context of Cryptography 15

over-engineered it is hard to believe your eyes. Yet the designers did the right
thing. They were confronted with a problem they had not solved successfully
before: building a large steel bridge. They did an astoundingly good job. They
succeeded spectacularly; their bridge is still in use today over a century later.
That’s what good engineering looks like.

Over the years, bridge designers have learned how to build such bridges
much more cheaply and efficiently. But the first priority is always to get a
bridge that is safe and that works. Efficiency, in the form of reducing cost, is a
secondary issue.

We have largely reversed these priorities in the computer industry. The
primary design objective all too often includes very strict efficiency demands.
The first priority is always speed, even in areas where speed is not important.
Here speed might be the speed of the system itself, or it might be the speed
with which the system can be brought to market. This leads to security cost-
cutting. The result is generally a system that is somewhat efficient, yet is not
sufficiently secure.

There is another side to the Firth of Forth bridge story. In 1878, Thomas
Bouch completed the then-longest bridge in the world across the Firth of Tay
at Dundee. Bouch used a new design combining cast iron and wrought iron,
and the bridge was considered to be an engineering marvel. On the night of
December 28, 1879, less than two years later, the bridge collapsed in a heavy
storm as a train with 75 people on board crossed the bridge. All perished. It
was the major engineering disaster of the time.3 So when the Firth of Forth
bridge was designed a few years later, the designers put in a lot more steel,
not only to make the bridge safe but also to make it look safe to the public.

We all know that engineers will sometimes get a design wrong, especially
when they do something new. And when they get it wrong, bad things can
happen. But here is a good lesson from Victorian engineers: if it fails, back off
and become more conservative. The computer industry has largely forgotten
this lesson. When we have very serious security failures in our computer
systems, and we have them all too frequently, it is very easy to just plod along,
accepting it as if it were fate. We rarely go back to the drawing board and
design something more conservative. We just keep throwing a few patches
out and hoping this will solve the problem.

By now, it will be quite clear to you that we will choose security over
efficiency any time. How much CPU time are we willing to spend on security?
Almost all of it. We wouldn’t care if 90% of our CPU cycles were spent on a
reliable security system if the alternative was a faster but insecure system. The
lack of computer security is a real hindrance to us, and to most users. That is

3William McGonagall wrote a famous poem about the Tay Bridge disaster, ending with the
lines For the stronger we our houses do build/The less chance we have of being killed. This advice is still
highly relevant today.

16 Part I ■ Introduction

why people still have to send pieces of paper around with signatures, and why
they have to worry about viruses and other attacks on our computers. Digital
crooks of the future will know much more and be much better equipped,
and computer security will become a larger and larger problem. We are still
only seeing the beginnings of the digital crime wave. We need to secure our
computers much better.

There are of course many ways of achieving security. But as Bruce extensively
documented in Secrets and Lies, good security is always a mixture of prevention,
detection, and response [114]. The role for cryptography is primarily in the
prevention part, which has to be very good to ensure that the detection and
response parts (which can and should include manual intervention) are not
overwhelmed. Cryptography can, however, be used to provide more secure
detection mechanisms, such as strong cryptographic audit logs. Cryptography
is what this book is about, so we’ll concentrate on that aspect.

Yes, yes, we know, 90% still sounds like a lot. But there is some consolation.
Remember first that we are willing to spend 90% of our CPU on security if
the alternative is an insecure system. Fortunately, in many cases the costs of
security can be hidden from the user. We can only type around 10 characters
per second—on a good day—and even the slow machines of a decade ago
had no trouble keeping up with that. Today’s machines are over a thousand
times faster. If we use 90% of the CPU for security, the computer will appear
one-tenth as fast. That is about the speed that computers were five years ago.
And those computers were more than fast enough for us to get our work
done. We may not always have to spend so many cycles on security. But we’re
willing to, and that’s the point.

There are only a few situations in which we have to wait on the computer.
These include waiting for Web pages, printing data, starting certain programs,
booting the machine, etc. A good security system would not slow down any of
these activities. Modern computers are so fast that it is hard to figure out how
to use the cycles in a useful manner. Sure, we can use alpha-blending on screen
images, 3D animations, or even voice recognition. But the number-crunching
parts of these applications do not perform any security-related actions, so they
would not be slowed down by a security system. It is the rest of the system,
which is already as fast as it can possibly get on a human time scale, that will
have the overhead. And we don’t care if it goes at one-tenth the speed if it
increases security. Most of the time, you wouldn’t even notice the overhead.
Even in situations where the overhead would be significant, that is just the
cost of doing business.

It will be clear by now that our priorities are security first, second, and
third, and performance somewhere way down the list. Of course, we still want
the system to be as efficient as possible, but not at the expense of security.
We understand that this design philosophy is not always possible in the real
world. Often the realities of the marketplace trump the need for security.

Chapter 1 ■ The Context of Cryptography 17

Systems can rarely be developed from scratch, and often need to be secured
incrementally or after deployment. Systems need to be backward-compatible
with existing, insecure, systems. The three of us have designed many security
systems under these constraints, and we can tell you that it’s practically
impossible to build a good security system that way. The design philosophy
of this book is security first and security foremost. It’s one we’d like to see
adopted more in commercial systems.

1.10.2 Security Versus Features
Complexity is the worst enemy of security, and it almost always comes in the
form of features or options.

Here is the basic argument. Imagine a computer program with 20 different
options, each of which can be either on or off. That is more than a million
different configurations. To get the program to work, you only need to test
the most common combination of options. To make the program secure, you
must evaluate each of the million possible configurations that the program can
have, and check that each configuration is secure against every possible form
of attack. That is impossible to do. And most programs have considerably
more than 20 options. The best way to have confidence in building something
secure is to keep it simple.

A simple system is not necessarily a small system. You can build large
systems that are still fairly simple. Complexity is a measure of how many
things interact at any one point. If the effect of an option is limited to a small
part of the program, then it cannot interact with an option whose effect is
limited to another part of the program. To make a large, simple system you
have to provide a very clear and simple interface between different parts of
the system. Programmers call this modularization. This is all basic software
engineering. A good simple interface isolates the rest of the system from the
details of a module. And that should include any options or features of the
module.

One of the things we have tried to do in this book is define simple interfaces
for cryptographic primitives. No features, no options, no special cases, no extra
things to remember, just the simplest definition we could come up with. Some
of these definitions are new; we developed them while writing the book. They
have helped us shape our thinking about good security systems, and we hope
they will help you, too.

1.10.3 Security Versus Evolving Systems
One of the other biggest problems for security is that the full system continues
to evolve even after the underlying security mechanisms are put in place. This
means that the designer of the security mechanism needs not only to exhibit

18 Part I ■ Introduction

professional paranoia and consider a wide range of attackers and attack goals,
but also to anticipate and prepare for future uses of the system. This can also
create enormous challenges, and is an issue that systems designers need to
keep in mind.

1.11 Further Reading

Anyone interested in cryptography should read Kahn’s The Codebreakers [67].
This is a history of cryptography, from ancient times to the 20th century. The
stories provide many examples of the problems engineers of cryptographic
systems face. Another good historical text, and a pleasurable read, is The Code
Book [120].

In some ways, the book you’re holding is a sequel to Bruce’s first book,
Applied Cryptography [112]. Applied Cryptography covers a much broader range
of subjects, and includes the specifications of all the algorithms it discusses.
However, it does not go into the engineering details that we talk about in this
book.

For facts and precise results, you can’t beat the Handbook of Applied Cryp-
tography, by Menezes, van Oorschot, and Vanstone [90]. It is an encyclopedia
of cryptography and an extremely useful reference book; but just like an
encyclopedia, it’s hardly a book to learn the field from.

If you’re interested in the theory of cryptography, an excellent sequence of
texts is Foundations of Cryptography, by Goldreich [55, 56]. Another excellent
text is Introduction to Modern Cryptography, by Katz and Lindell [68]. There are
also numerous excellent university course notes available online, such as the
course notes from Bellare and Rogaway [10].

Bruce’s previous book Secrets and Lies [114] is a good explanation of computer
security in general, and how cryptography fits into that larger picture. And
there’s no better book on security engineering than Ross Anderson’s Security
Engineering [2]. Both are essential to understand the context of cryptography.

There are a number of good online resources for staying abreast of
recent issues in cryptography and computer security. We suggest subscribing
to Bruce’s Crypto-Gram newsletter, http://www.schneier.com/crypto-gram
.html, and reading Bruce’s blog, http://www.schneier.com/blog/.

1.12 Exercises for Professional Paranoia

They say that one of the best ways to learn a foreign language is to immerse
yourself in it. If you want to learn French, move to France. This book is
designed to immerse you in the language and mindset of cryptography and

../../../../../www.schneier.com/crypto-gram.html
../../../../../www.schneier.com/crypto-gram.html
../../../../../www.schneier.com/blog/default.htm

Chapter 1 ■ The Context of Cryptography 19

computer security. The following exercises will help immerse you further.
They will force you to think about security on a regular basis, such as when
you’re reading news articles, talking with friends about current events, or
reading the description of a new product on Slashdot. Thinking about security
will no longer be a chore relegated to the time when you are specifically tasked
with thinking about security. You may even start thinking about security while
you’re out walking your dog, in the shower, or at a movie. In short, you will
be developing the professional paranoia mindset and will start thinking like a
security professional.

It is also extremely important for a computer security practitioner (and,
actually, all computer scientists) to be aware of the broader contextual issues
surrounding technology. Technologies don’t exist in isolation. Rather, they
are one small aspect of a larger ecosystem consisting of people, economics,
ethics, cultural differences, politics, law, and so on. These exercises will also
give you an opportunity to discuss and explore these bigger picture issues as
they relate to security.

We suggest that you regularly return to the exercises below. Try to do
these exercises as often as possible. For example, you might do these exercises
every week for a month straight, or after you finish every few chapters in
this book, whichever is more frequent. The exercises might seem laborious
and tedious at first. But if you’re dedicated to this practice, you will soon
find yourself doing these exercises automatically whenever you encounter
a security-related news article or see a new product. This is the professional
paranoia mindset. Further, if you continue to do these exercises as you read
this book, you will notice that your ability to evaluate the technical properties
of systems will mature over time.

We also recommend doing the exercises with a friend or, if you are in a class,
with a classmate as part of group instruction. Discussing security issues with
others can be very enlightening—you will soon realize firsthand that security
is incredibly subtle and that it is very easy to overlook critical weaknesses.

Obviously, if you’re not taking a class and doing the formal exercises, then
you may choose to conduct these exercises in your head rather than actually
producing written reports. Still, we suggest producing a written report at
least once; doing so will force you to really think through the relevant issues
completely.

1.12.1 Current Event Exercises
For these exercises, you should critically analyze some event currently in the
news. The event you choose should somehow relate to computer security.
Maybe improved computer security mechanisms would have thwarted the
event. Maybe the event motivates the design of new security mechanisms or
policies.

20 Part I ■ Introduction

The current events retrospective that you write should be short, concise, very
thoughtful, and well written. Assume a general audience. Your goal should
be to write an article that will help the reader learn about and understand the
computer security field and how it fits into the broader context.

You should summarize the current event, discuss why the current event
arose, reflect on what could have been done differently prior to the event
arising (to perhaps prevent, deter, or alter the consequences of the event),
describe the broader issues surrounding the current event (such as ethical
issues or societal issues), and propose possible reactions to the current event
(e.g., how the public, policy makers, corporations, the media, or others should
respond).

1.12.2 Security Review Exercises
These exercises deal with developing your security mindset in the context of
real products or systems. Your goal with the security reviews is to evaluate the
potential security and privacy issues of new technologies, evaluate the severity
of those issues, and discuss how to address those security and privacy issues.
These reviews should reflect deeply on the technology that you’re discussing,
and should therefore be significantly longer than your current event exercises.

Each security review should contain:

Summary of the technology that you’re evaluating. You may choose to
evaluate a specific product (like a recently introduced wireless im-
plantable drug pump) or a class of products with some common goal
(like the set of all implantable medical devices). This summary should be
at a high level, around one or two paragraphs in length. State the aspects
of the technology that are relevant to your observations in the following
bullets.

For these exercises, it is acceptable to make assumptions about how the
products work. However, if you do make assumptions about a product,
then you should make it clear that you are doing so, and you should
explicitly state what those assumptions are.

Being able to clearly summarize a product (even with explicitly stated
assumptions) is very important. If you don’t understand the technology
well enough to provide a crisp and clear summary, then you probably
don’t understand the technology well enough to evaluate its security and
privacy.

State at least two assets and, for each asset, a corresponding security
goal. Explain why the security goals are important. You should produce
around one or two sentences per asset/goal.

Chapter 1 ■ The Context of Cryptography 21

State at least two possible threats, where a threat is defined as an action
by an adversary aimed at compromising an asset. Give an example
adversary for each threat. You should have around one or two sentences
per threat/adversary.

State at least two potential weaknesses. Again, justify your answer using
one or two sentences per weakness. For the purposes of these exercises,
you don’t need to fully verify whether these potential weaknesses are
also actual weaknesses.

State potential defenses. Describe potential defenses that the system
could use or might already be using to address the potential weaknesses
you identified in the previous bullet.

Evaluate the risks associated with the assets, threats, and potential
weaknesses that you describe. Informally, how serious do you think
these combinations of assets, threats, and potential weaknesses are?

Conclusions. Provide some thoughtful reflections on your answers
above. Also discuss relevant ‘‘bigger picture’’ issues (ethics, likelihood
the technology will evolve, and so on).

Some examples of past security reviews are online at http://www.schneier
.com/ce.html.

1.13 General Exercises

Exercise 1.1 Create an attack tree for stealing a car. For this and the
other attack tree exercises, you can present your attack tree as a figure (like
Figure 1.1), or you can present your attack tree as a list numbered in outline
form (e.g., 1, 1.1, 1.2, 1.2.1, 1.2.2, 1.3, . . .).

Exercise 1.2 Create an attack tree for getting into a gym without paying.

Exercise 1.3 Create an attack tree for getting food from a restaurant without
paying.

Exercise 1.4 Create an attack tree for learning someone’s online banking
account name and password.

Exercise 1.5 Create an attack tree for reading someone else’s e-mail.

Exercise 1.6 Create an attack tree for preventing someone from being able to
read his own e-mail.

../../../../../www.schneier.com/ce.html
../../../../../www.schneier.com/ce.html

22 Part I ■ Introduction

Exercise 1.7 Create an attack tree for sending e-mail as someone else. Here,
the attacker’s goal is to convince an e-mail recipient that an e-mail she receives
is from someone else (say, Bob), when in fact Bob never sent that e-mail.

Exercise 1.8 Find a new product or system that was announced or released
within the last three months. Conduct a security review of that product or
system as described in Section 1.12. Pick one of the assets that you identified
and construct an attack tree for compromising that asset.

Exercise 1.9 Provide a concrete example, selected from media reports or your
personal experiences, in which attackers compromised a system by exploiting
something other than the weakest link. Describe the system, describe what
you view the weakest link of the system to be and why, and describe how the
system was compromised.

Exercise 1.10 Describe a concrete example, excluding the ones given in this
chapter, where improving the security of a system against one type of attack
can increase the likelihood of other attacks.

C H A P T E R

2

Introduction to Cryptography

This chapter introduces basic cryptographic concepts and provides back-
ground information you will need for the rest of the book.

2.1 Encryption

Encryption is the original goal of cryptography. The generic setting is shown
in Figure 2.1. Alice and Bob want to communicate with each other. (The
use of personal names, particularly Alice, Bob, and Eve, is a tradition in
cryptography.) However, in general, communication channels are assumed
not to be secure. Eve is eavesdropping on the channel. Any message m that
Alice sends to Bob is also received by Eve. (The same holds for messages
sent by Bob to Alice, but that is the same problem, except with Alice and Bob
reversed. As long as we can protect Alice’s messages, the same solution will
work for Bob’s messages, so we concentrate on Alice’s messages.) How can
Alice and Bob communicate without Eve learning everything?

m

Alice

m

Bob

m

Eve

m

Figure 2.1: How can Alice and Bob communicate securely?

23

24 Part I ■ Introduction

To prevent Eve from understanding the conversation that Alice and Bob are
having, they use encryption as shown in Figure 2.2. Alice and Bob first agree
on a secret key Ke. They have to do this via some communication channel that
Eve cannot eavesdrop on. Perhaps Alice mails a copy of the key to Bob, or
something similar. We will return to the exchange of keys later.

m, c := E (Ke, m) c, m := D (Ke, c)

Alice Bob

c

Eve

c

Figure 2.2: Generic setting for encryption

When Alice wants to send a message m, she first encrypts it using an
encryption function. We write the encryption function as E(Ke, m) and we
call the result the ciphertext c. (The original message m is called the plaintext.)
Instead of sending m to Bob, Alice sends the ciphertext c := E(Ke, m). When
Bob receives c, he can decrypt it using the decryption function D(Ke, c) to get
the original plaintext m that Alice wanted to send to him.

But Eve does not know the key Ke, so when she receives the ciphertext c she
cannot decrypt it. A good encryption function makes it impossible to find the
plaintext m from the ciphertext c without knowing the key. Actually, a good
encryption function should provide even more privacy than that. An attacker
shouldn’t be able to learn any information about m, except possibly its length
and the time it was sent.

This setting has obvious applications for transmitting e-mails, but it also
applies to storage. Storing information can be thought of in terms of transmit-
ting a message in time, rather than in space. In that situation Alice and Bob are
often the same person at different points in time, so the same solution applies.

2.1.1 Kerckhoffs’ Principle
Bob needs two things to decrypt the ciphertext. He must know the decryption
algorithm D, and the key Ke. An important rule is Kerckhoffs’ principle: the
security of the encryption scheme must depend only on the secrecy of the key
Ke, and not on the secrecy of the algorithm.

There are very good reasons for this rule. Algorithms are hard to change.
They are built into software or hardware, which can be difficult to update. In
practical situations, the same algorithm is used for a long time. That is just a
fact of life. And it is hard enough to keep a simple key secret. Keeping the
algorithm secret is far more difficult (and therefore more expensive). Nobody

Chapter 2 ■ Introduction to Cryptography 25

builds a cryptographic system for just two users. Every participant in the
system (and there could be millions) uses the same algorithm. Eve would only
have to get the algorithm from one of them, and one of them is bound to be
easy to subvert. Or she could just steal a laptop with the algorithm on it. And
remember our paranoia model? Eve might very well be one of the other users
of the system, or even one of its designers.

There are also good reasons why algorithms should be published. From
experience, we know that it is very easy to make a small mistake and create
a cryptographic algorithm that is weak. If the algorithm isn’t public, nobody
will find this fault until the attacker tries to attack it. The attacker can then
use the flaw to break the system. We have analyzed quite a number of secret
encryption algorithms, and all of them had weaknesses. This is why there is
a healthy distrust of proprietary, confidential, or otherwise secret algorithms.
Don’t be fooled by the old ‘‘Well, if we keep the algorithm secret too, it will
only increase security’’ assurance. That is wrong. The potential increase in
security is small, and the potential decrease in security is huge. The lesson is
simple: don’t trust secret algorithms.

2.2 Authentication

Alice and Bob have another problem in Figure 2.1. Eve can do more than just
listen in on the message. Eve could change the message in some way. This
requires Eve to have a bit more control over the communication channel, but
that is not at all an impossibility. For example, in Figure 2.3, Alice tries to send
the message m, but Eve interferes with the communication channel. Instead
of receiving m, Bob receives a different message m′. We assume that Eve also
learns the contents of the message m that Alice tried to send. Other things that
Eve could do are delete a message so that Bob never receives it, insert new
messages that she invents, record a message and then send it to Bob later, or
change the order of the messages.

m

Alice Bob

m ′

m ′
m ′

Eve

m

Figure 2.3: How does Bob know who sent the message?

Consider the point in the process where Bob has just received a message.
Why should Bob believe the message came from Alice? He has no reason to

26 Part I ■ Introduction

think it did. And if he doesn’t know who sent the message, then the message
is pretty useless.

To resolve this problem, we introduce authentication. Like encryption,
authentication uses a secret key that Alice and Bob both know. We’ll call the
authentication key Ka to distinguish it from the encryption key Ke. Figure 2.4
shows the process of authenticating a message m. When Alice sends the
message m, she computes a message authentication code, or MAC. Alice computes
the MAC a as a := h(Ka, m), where h is the MAC function and Ka is the
authentication key. Alice now sends both m and a to Bob. When Bob receives
m and a, he recomputes what a should have been, using the key Ka, and checks
that the a he receives is correct.

m, a := h (Ka, m)

Alice Bob

m ′

Eve

m, a m, a m, a = h (Ka, m)?

Figure 2.4: Generic setting for authentication

Now Eve wants to modify the message m to a different message m′. If she
simply replaces m with m′, Bob will still compute h(Ka, m′) and compare it to
a. But a good MAC function will not give the same result for two different
messages, so Bob will recognize that the message is not correct. Given that the
message is wrong in one way or another, Bob will just discard the message.

If we assume that Eve does not know the authentication key Ka, the only
way Eve can get a message and a valid MAC is to listen to Alice when she
sends messages to Bob. This still allows Eve to try some mischief. Eve can
record messages and their MACs, and then replay them by sending them to
Bob at any later time.

Pure authentication is only a partial solution. Eve can still delete messages
that Alice sends. She can also repeat old messages or change the message
order. Therefore, authentication is almost always combined with a numbering
scheme to number the messages sequentially. If m contains such a message
number, then Bob is not fooled by Eve when she replays old messages. Bob
will simply see that the message has a correct MAC but the sequence number
is that of an old message, so he will discard it.

Authentication in combination with message numbering solves most of
the problem. Eve can still stop Alice and Bob from communicating, or delay
messages by first deleting them and then sending them to Bob at a later time.
If the messages aren’t also encrypted, then Eve can selectively delete or delay
messages based on their content. But deleting or delaying messages is about
the extent of what she can do.

Chapter 2 ■ Introduction to Cryptography 27

The best way to look at it is to consider the case where Alice sends a sequence
of messages m1, m2, m3, Bob only accepts messages with a proper MAC
and whose message number is strictly greater1 than the message number of
the last message he accepted. So Bob receives a sequence of messages that is a
subsequence of the sequence that Alice sent. A subsequence is simply the same
sequence with zero or more messages deleted.

This is the extent to which cryptography can help in this situation. Bob will
receive a subsequence of the messages that Alice sent, but other than deleting
certain messages or stopping all communications, Eve cannot manipulate
the message traffic. To avoid the loss of information, Alice and Bob will
often use a scheme of resending messages that were lost, but that is more
application-specific, and not part of the cryptography.

Of course, in many situations Alice and Bob will want to use both encryption
and authentication. We will discuss this combination in great detail later. Never
confuse the two concepts. Encrypting a message doesn’t stop manipulation of
its contents, and authenticating a message doesn’t keep the message secret.
One of the classical mistakes in cryptography is to think that encrypting a
message also stops Eve from changing it. It doesn’t.

2.3 Public-Key Encryption

To use encryption as we discussed in Section 2.1, Alice and Bob must share the
key Ke. How did they get far enough along to share a key? Alice couldn’t just
send the key to Bob over the communication channel, as Eve could read the
key too. The problem of distributing and managing keys is one of the really
difficult parts of cryptography, for which we have only partial solutions.

Alice and Bob could have exchanged the key when they met last month
for a drink. But if Alice and Bob are part of a group of 20 friends that like to
communicate with each other, then each member of the group would have to
exchange a total of 19 keys. All in all, the group would have to exchange a
total of 190 keys. This is already very complex, and the problem grows with
the number of people Alice communicates with.

Establishing cryptographic keys is an age-old problem, and one important
contribution to the solution is public-key cryptography. We will first discuss
public-key encryption, shown in Figure 2.5. We left Eve out of this diagram;
from now on, just assume that all communications are always accessible to
an enemy like Eve. Apart from Eve’s absence, this figure is very similar to
Figure 2.2. The major difference is that Alice and Bob no longer use the same

1‘‘Strictly greater’’ means ‘‘greater and not equal to.’’

28 Part I ■ Introduction

key, but instead use different keys. This is the significant idea behind public-
key cryptography—the key to encrypt a message is different from the key to
decrypt that message.

m, c := E (PBob, m)

Alice Bob

c
c, m := D (SBob, c)

Figure 2.5: Generic setting for public-key encryption

To set things up, Bob first generates a pair of keys (SBob, PBob) using a special
algorithm. The two keys are the secret key SBob and the public key PBob. Bob
then does a surprising thing: he publishes PBob as his public key. This act makes
Bob’s public key PBob universally accessible to everyone, including both Alice
and Eve. (Why else would it be called a public key?)

When Alice wants to send a message to Bob, she first obtains Bob’s public
key. She might obtain the public key from a public directory, or perhaps
she obtains the public key from someone else she trusts. Alice encrypts the
message m with the public key PBob to get the ciphertext c, and sends c to
Bob. Bob uses his secret key SBob and the decryption algorithm to decrypt the
message and get the message m.

For this to work, the key-pair generation algorithm, encryption algorithm,
and decryption algorithm have to ensure that the decryption actually yields
the original message. In other words: D(SBob, E(PBob, m)) = m must hold for all
possible messages m. We’ll examine this in more detail later.

Not only are the two keys that Alice and Bob use different, but the encryption
and decryption algorithms can also be very different. All public-key encryption
schemes depend heavily on mathematics. One obvious requirement is that it
should not be possible to compute the secret key from the corresponding
public key, but there are many more requirements as well.

This type of encryption is called asymmetric-key encryption, or public-
key encryption, as opposed to the symmetric-key encryption or secret-key
encryption we discussed earlier.

Public-key cryptography makes the problem of distributing keys a lot
simpler. Now Bob only has to distribute a single public key that everybody
can use. Alice publishes her public key in the same way, and now Alice and
Bob can communicate securely. Even in large groups, each group member
only has to publish a single public key, which is quite manageable.

So why do we bother with secret-key encryption if public-key encryption
is so much easier? Because public-key encryption is much less efficient, by
several orders of magnitude. Using it for everything is simply too expensive.
In practical systems that use public-key cryptography, you almost always see
a mixture of public-key and secret-key algorithms. The public-key algorithms

Chapter 2 ■ Introduction to Cryptography 29

are used to establish a secret key, which in turn is used to encrypt the
actual data. This combines the flexibility of public-key cryptography with the
efficiency of symmetric-key cryptography.

2.4 Digital Signatures

Digital signatures are the public-key equivalent of message authentication
codes. The generic setting is shown in Figure 2.6. This time, it is Alice who uses
a key generation algorithm to generate a key pair (SAlice, PAlice) and publishes
her public key PAlice. When she wants to send a signed message m to Bob, she
computes a signature s := σ (SAlice, m). She sends m and s to Bob. Bob uses a
verification algorithm v(PAlice, m, s) that uses Alice’s public key to verify the
signature. The signature works just like a MAC, except that Bob can verify
it with the public key, whereas the secret key is required to create a new
signature.

m, s := s (SAlice, m)

Alice Bob

m, s
m, u (PAlice, m, s)?

Figure 2.6: Generic setting for digital signature

Bob only needs to have Alice’s public key to verify that the message came
from Alice. Interestingly enough, anybody else can get Alice’s public key and
verify that the message came from Alice. This is why we generally call s a
digital signature. In a sense, Alice signs the message. If there is ever a dispute,
Bob can take m and s to a judge and prove that Alice signed the message.

This is all very nice in theory, and it works too . . . in theory. In real life,
digital signatures have a number of limitations that are important to realize.
The main problem is that Alice doesn’t compute the signature herself; instead,
she has her computer compute the signature. The digital signature is therefore
no proof that Alice approved the message, or even saw it on her computer
screen. Given the ease with which viruses take over computers, the digital
signature actually proves very little in this scenario. Nonetheless, when used
appropriately, digital signatures are extremely useful.

2.5 PKI

Public-key cryptography makes key management simpler, but Alice still
has to find Bob’s public key. How can she be sure it is Bob’s key, and
not somebody else’s? Maybe Eve created a key pair and published the key

30 Part I ■ Introduction

while impersonating Bob. The general solution is to use a PKI, or public key
infrastructure.

The main idea is to have a central authority called the certificate authority,
or CA. Each user takes his public key to the CA and identifies himself to the
CA. The CA then signs the user’s public key using a digital signature. The
signed message, or certificate, states: ‘‘I, the CA, have verified that public key
PBob belongs to Bob.’’ The certificate will often include an expiration date and
other useful information.

Using certificates, it is much easier for Alice to find Bob’s key. We will
assume that Alice has the CA’s public key, and has verified that this is the
correct key. Alice can now retrieve Bob’s key from a database, or Bob can
e-mail his key to Alice. Alice can verify the certificate on the key, using the
CA’s public key that she already has. This certificate ensures that she has the
correct key to communicate with Bob. Similarly, Bob can find Alice’s public
key and be sure that he is communicating with the right person.

In a PKI, each participant only has to have the CA certify his public key,
and know the CA’s public key so that he can verify the certificates of other
participants. This is far less work than exchanging keys with every party he
communicates with. That’s the great advantage of a PKI: register once, use
everywhere.

For practical reasons, a PKI is often set up with multiple levels of CAs.
There is a top-level CA, called the root, which issues certificates on the keys of
lower-level CAs, which in turn certify the user keys. The system still behaves
in the same way, but now Alice has to check two certificates to verify Bob’s
key.

A PKI is not the ultimate solution; there are still many problems. First of
all, the CA must be trusted by everybody. In some situations, that’s easy. In a
company, the HR department knows all employees, and can take on the role
of CA. But there is no entity in the world that is trusted by everybody. The
idea that a single PKI can handle the whole world does not seem viable.

The second problem is one of liability. What if the CA issues a false certificate,
or the secret key of the CA is stolen? Alice would be trusting a false certificate,
and she might lose a lot of money because of that. Who pays? Is the CA is
willing to back it up with some kind of insurance? This requires a far more
extensive business relationship between Alice and the CA.

There are many companies at the moment that are trying to be the world’s
CA. VeriSign is probably the best-known one. However, VeriSign explicitly
limits its own liability in case it fails to perform its function properly. In most
cases, the liability is limited to $100. That is probably less than we paid for our
last order of books: transactions which were secured using certificates signed
by VeriSign. That wasn’t a problem because payment by credit card is safe for
the consumer. However, we won’t be buying our next car using a certificate
that VeriSign only backs with a $100 guarantee.

Chapter 2 ■ Introduction to Cryptography 31

2.6 Attacks

Having described the most important functions used in cryptography, we will
now talk about some attacks. We will focus on attacks against encryption
schemes here. There are many types of attacks, each with its own severity.

2.6.1 The Ciphertext-Only Model
A ciphertext-only attack is what most people mean when talking about breaking
an encryption system. This is the situation in which Alice and Bob are
encrypting their data, and all you as the attacker get to see is the ciphertext.
Trying to decrypt a message if you only know the ciphertext is called a
ciphertext-only attack. This is the most difficult type of attack, because you
have the least amount of information.

2.6.2 The Known-Plaintext Model
A known-plaintext attack is one in which you know both the plaintext and
the ciphertext. The most obvious goal is to find the decryption key. At first
this looks very implausible: how could you know the plaintext? It turns out
that there are many situations in which you get to know the plaintext of a
communication. Sometimes there are messages that are easy to predict. For
example: Alice is away on holiday and has an e-mail autoresponder that sends
an ‘‘I’m away on holiday’’ reply to every incoming e-mail. You get an exact
copy of this message by sending an e-mail to Alice and reading the reply.
When Bob sends an e-mail to Alice, the autoresponder also replies, this time
encrypted. Now you have the ciphertext and the plaintext of a message. If
you can find the key, you can decrypt all other messages that Alice and Bob
exchange with the same key. The latter part is important and bears repeating:
You use the knowledge of some plaintext-ciphertext pairs to learn the key, and
then use knowledge of the key to decrypt other ciphertexts.

Another typical situation is where Alice sends the same message to many
people, including you. You now have the plaintext and the ciphertexts of the
copy she sent to everybody else.

Maybe Alice and Bob are sending drafts of a press release to each other.
Once the press release is published, you know the plaintext and the ciphertext.

Even if you don’t know the entire plaintext, you often know part of it.
E-mails will have a predictable start, or a fixed signature at the end. The
header of an IP packet is highly predictable. Such predictable data leads to a
partially known plaintext, and we classify this under known-plaintext attacks.

A known-plaintext attack is more powerful than a ciphertext-only attack.
You, as the attacker, get more information than in the ciphertext-only case.
Extra information can only help you.

32 Part I ■ Introduction

2.6.3 The Chosen-Plaintext Model
The next level of control is to let you choose the plaintext. This is a more
powerful type of attack than a known-plaintext attack. Now you get to select
specially prepared plaintexts, chosen to make it easy to attack the system. You
can choose any number of plaintexts and get the corresponding ciphertexts.
Again, this is not unrealistic in practice. There are quite a large number of
situations in which an attacker can choose the data that is being encrypted.
Quite often Alice will get information from some outside source (e.g., one that
can be influenced by the attacker) and then forward that information to Bob in
encrypted form. For example, the attacker might send Alice an e-mail that she
knows Alice will forward to Bob.

Chosen-plaintext attacks are not unreasonable in any way. A good encryption
algorithm has no trouble withstanding a chosen-plaintext attack. Be very
skeptical if anyone ever tries to convince you that a chosen-plaintext attack is
not relevant to their system.

There are two variations on this attack. In the offline attack, you prepare
a list of all the plaintexts you want to have encrypted before you get the
ciphertexts. In the online attack, you can choose new plaintexts depending on
the ciphertexts you’ve already received. Most of the time this distinction can
be ignored. We will normally talk about the online version of the attack, which
is the more powerful of the two.

2.6.4 The Chosen-Ciphertext Model
The term chosen-ciphertext is a misnomer. It should really be called a chosen
ciphertext and plaintext attack, but that is too long. In a chosen-plaintext
attack, you get to choose plaintext values. In a chosen-ciphertext attack, you
get to choose both plaintext values and ciphertext values. For every plaintext
that you choose, you get the corresponding ciphertext, and for any ciphertext
you choose, you get the corresponding plaintext.

Obviously, the chosen-ciphertext attack is more powerful than a chosen-
plaintext attack, as the attacker has more freedom. The goal still is to recover
the key. With the key, you can decrypt other ciphertexts. Again, any reasonable
encryption scheme has no trouble surviving a chosen ciphertext attack.

2.6.5 The Distinguishing Attack Goal
The attacks described above recover the plaintext or the decryption key. There
are attacks that do not recover the key, but let you decrypt a specific other
message. There are also attacks that do not recover a message, but reveal
some partial information about the message. For example, given 10 chosen
plaintexts, their corresponding ciphertexts, and an 11th ciphertext, it may be
possible to learn whether the least significant bit of the 11th plaintext is a 1 or a

Chapter 2 ■ Introduction to Cryptography 33

0 even if it’s not possible to learn the corresponding decryption key. Even this
sort of information can be very valuable to an attacker. There are too many
forms of attack to list here, and new forms of attack are thought up all the
time. So what should we defend against?

We wish to defend against a distinguishing attack. A distinguishing attack is
any nontrivial method that detects a difference between the ideal encryption
scheme and the actual one. This covers all the attacks we have discussed so far,
as well as any yet-to-be-discovered attacks. Of course, we will have to define
what the ideal scheme is. This probably all sounds very confusing right now,
since we haven’t defined what an ideal scheme is yet. We will begin to clarify
this in the next chapter.

Isn’t this all rather far-fetched? Well, no. Our experience shows that you
really want your building blocks to be perfect. Some encryption functions
have imperfections that cause them to fail the distinguishing attack definition,
but other than that they are perfectly satisfactory encryption functions. Every
time you use them, you have to check that these imperfections do not lead
to any problems. In a system with multiple building blocks, you also have
to check whether any combination of imperfections leads to problems. This
quickly becomes unworkable, and in practice we have found actual systems
that exhibit weaknesses due to known imperfections in their building blocks.

2.6.6 Other Types of Attack
So far we have mostly talked about attacking encryption functions. You can
also define attacks for other cryptographic functions, such as authentication,
digital signatures, etc. We will discuss these as they arise.

Even for encryption functions, we only discussed the basic attack models
in which an attacker knows or chooses plaintexts or ciphertexts. Sometimes
the attacker also knows when the ciphertexts were generated, or how fast the
encryption or decryption operations were. Timing information and ciphertext
length can reveal private information about encrypted messages. Attacks that
make use of this type of additional information are called information leakage
or side-channel attacks.

2.7 Under the Hood

Let’s now look under the hood at two generic attack techniques.

2.7.1 Birthday Attacks
Birthday attacks are named after the birthday paradox. If you have 23 people
in a room, the chance that two of them will have the same birthday exceeds
50%. That is a surprisingly large probability, given that there are 365 possible
birthdays.

34 Part I ■ Introduction

So what is a birthday attack? It is an attack that depends on the fact that
duplicate values, also called collisions, appear much faster than you would
expect. Suppose a system for secure financial transactions uses a fresh 64-bit
authentication key for each transaction. (For simplicity, we assume that no
encryption is used.) There are 264 (=18 · 1018, or eighteen billion billion) possible
key values, so this should be quite difficult to break, right? Wrong! After seeing
about 232 (=4 · 109, or four billion) transactions, the attacker can expect that
two transactions use the same key. Suppose the first authenticated message is
always the same ‘‘Are you ready to receive a transaction?’’ message. If two
transactions use the same authentication key, then the MAC values on their
first messages will also be the same, which is easy to detect for the attacker.
By knowing that the two keys are the same, the attacker can now insert the
messages from the older transaction into the newer transaction while it is
going on. As they are authenticated by the correct key, these bogus messages
will be accepted, which is a clear break of the financial transaction system.

In general, if an element can take on N different values, then you can expect
the first collision after choosing about

√
N random elements. We’re leaving out

the exact details here, but
√

N is fairly close. For the birthday paradox, we have
N = 365 and

√
N ≈ 19. The number of people required before the chance of a

duplicate birthday exceeds 50% is in fact 23, but
√

N is close enough for our
purposes and is the approximation that cryptographers often use. One way of
looking at this is that if you choose k elements, then there are k(k − 1)/2 pairs
of elements, each of which has a 1/N chance of being a pair of equal values.
So the chance of finding a collision is close to k(k − 1)/2N. When k ≈ √

N, this
chance is close to 50%.2

Most of the time we talk about n-bit values. As there are 2n possible values,
you need almost

√
2n = 2n/2 elements in the set before you expect a collision.

We will often talk about this as the 2n/2 bound, or the birthday bound.

2.7.2 Meet-in-the-Middle Attacks
Meet-in-the-middle attacks are the cousins of birthday attacks. (Together we call
them collision attacks.) They are more common and more useful. Instead of
waiting for a key to repeat, you can build a table of keys that you have chosen
yourself.

Let’s go back to our previous example of the financial transaction system
that uses a fresh 64-bit key to authenticate each transaction. By using a meet-
in-the-middle attack, the attacker can break the system even further. Here is
how he does it: he chooses 232 different 64-bit keys at random. For each of these

2These are only approximations, but good enough for our purposes.

Chapter 2 ■ Introduction to Cryptography 35

keys, he computes the MAC on the ‘‘Are you ready to receive a transaction?’’
message, and stores both the MAC result and the key in a table. Then he
eavesdrops on each transaction and checks if the MAC of the first message
appears in his table. If the MAC does appear in the table, then there is a very
good chance that the authentication key for that transaction is the same key
as the attacker used to compute that table entry, and that key value is stored
right alongside the MAC value in the table. Now that the attacker knows the
authentication key, he can insert arbitrary messages of his choosing into the
transaction. (The birthday attack only allowed him to insert messages from an
old transaction.)

How many transactions does the attacker need to listen to? Well, he has
precomputed the MAC on 1 in 232 of all the possible keys, so any time the
system chooses a key, there is a 1 in 232 chance of choosing one that he can
recognize. So after about 232 transactions, he can expect a transaction that uses
a key he precomputed the MAC for. The total workload for the attacker is
about 232 steps in the precomputation plus listening in to 232 transactions,
which is a lot less work than trying all 264 possible keys.

The difference between the birthday attack and the meet-in-the-middle
attack is that in a birthday attack, you wait for a single value to occur twice
within the same set of elements. In a meet-in-the-middle attack, you have two
sets, and wait for an overlap between the two sets. In both cases, you can
expect to find the first result at around the same number of elements.

A meet-in-the-middle attack is more flexible than a birthday attack. Let’s
look at it in a more abstract way. Suppose we have N possible values. The
first set has P elements, the second has Q elements. There are PQ pairs of
elements, and each pair has a chance of 1/N of matching. We expect a collision
as soon as PQ/N is close to 1. The most efficient choice is P ≈ Q ≈ √

N. This
is exactly the birthday bound again. The meet-in-the-middle attack provides
extra flexibility. Sometimes it is easier to get elements for one of the sets than it
is to get elements for the other set. The only requirement is that PQ be close to
N. You could choose P ≈ N1/3 and Q ≈ N2/3. In the example above, the attacker
might make a list of 240 possible MAC values for the first message, and expect
to find the first authentication key after listening to only 224 transactions.

When we do a theoretical analysis of how easy a system is to attack, we often
use the

√
N size for both sets, because this generally minimizes the number

of steps the attacker has to perform. It also requires a more detailed analysis
to find out whether the elements of one set might be harder to get than the
elements of another set. If you ever want to perform a meet-in-the-middle
attack in real life, you should carefully choose the sizes of the sets to ensure
PQ ≈ N at the least possible cost.

36 Part I ■ Introduction

2.8 Security Level

With enough effort, any practical cryptographic system can be attacked suc-
cessfully. The real question is how much work it takes to break a system. An
easy way to quantify the workload of an attack is to compare it to an exhaustive
search. An exhaustive search attack is one that tries all possible values for some
target object, like the key. If an attack requires 2235 steps of work, then this
corresponds to an exhaustive search for a 235-bit value.

We always talk about an attacker needing a certain number of steps,
but haven’t yet specified what a step is. This is partly laziness, but it also
simplifies the analysis. When attacking an encryption function, computing a
single encryption of a given message with a given key can be a single step.
Sometimes a step is merely looking something up in a table. It varies. But
in all situations, a step can be executed by a computer in a very short time.
Sometimes it can be done in one clock cycle, sometimes it needs a million
clock cycles, but in terms of the workloads that cryptographic attacks require,
a single factor of a million is not terribly important. The ease of using a
step-based analysis far outweighs the built-in inaccuracies. You can always
do a more detailed analysis to find out how much work a step is. For a quick
estimate, we always assume that a single step requires a single clock cycle.

Any system designed today really needs at least a 128-bit security level. That
means that any attack will require at least 2128 steps. A new system designed
today is, if successful, quite likely to still be in operation 30 years from now,
and should provide at least 20 years of confidentiality for the data after the
point at which it was last used. So we should aim to provide security for the
next 50 years. That is a rather tall order, but there has been some work done to
extrapolate Moore’s law and apply it to cryptography. A security level of 128
bits is sufficient [85]. One could potentially argue for 100 bits, or even 110 bits,
but cryptographic primitives are often engineered around powers of two, so
we’ll use 128 bits.

This concept of security level is only approximate. We only measure the
amount of work the attacker has to do, and ignore things like memory
or interactions with the fielded system. Dealing only with the attacker’s
workload is hard enough; complicating the model would make the security
analysis much harder still, and greatly increase the chance of overlooking
a vital point. As the cost for using a simple and conservative approach is
relatively low, we use the simple concept of security level. The level of security
is, however, a function of the access of the adversary—is the adversary
restricted to the known plaintext model or can she operate under the chosen
plaintext model, and how many encrypted messages can she see as part of her
attack?

Chapter 2 ■ Introduction to Cryptography 37

2.9 Performance

Securitydoesnotcomefor free.Whilecryptographers try tomakecryptographic
algorithms as efficient as possible, these algorithms are sometimes perceived as
being too slow. Creating custom cryptography for efficiency can be very risky.
If you deviate from the beaten path in security, you have to do an enormous
amount of analysis work to make sure you don’t accidentally end up creating
a weak system. Such analysis requires experienced cryptographers. For most
systems, it is much cheaper to buy a faster computer than to go to the trouble
and expense of designing and implementing a more efficient security system.

For most systems, the performance of the cryptography is not a problem.
Modern CPUs are so fast that they can keep up with almost any data stream they
handle. For example, encrypting a 100 Mb/s data link with the AES algorithm
requires only 20% of the cycles on a 1 GHz Pentium III CPU. (Less in real life, as
you never get to transfer 100 Mb/s over such a link, due to the overhead of the
communication protocol.)

There are, however, some situations in which cryptography creates a perfor-
mance bottleneck. A good example is Web servers that use a very large number
of SSL connections. The initialization of an SSL connection uses public-key cryp-
tography and requires a large amount of computing power on the server side.
Instead of developing a custom SSL-replacement that is more efficient for the
server, it is far cheaper and safer to buy hardware accelerators to handle the
existing SSL protocol.

Recently we ran across a good argument to convince people to choose security
over performance. ‘‘There are already enough insecure fast systems; we don’t
need another one.’’ This is very true. Half-measures in security cost nearly as
muchas doing it well, but provide very little practical security. We firmly believe
that if you’re going to implement any security, you should do it well.

2.10 Complexity

The more complex a system, the more likely it has security problems. Indeed,
we like to say that complexity is the worst enemy of security. This is a simple
statement, but it took us a while to really understand it.

Part of the problem is the test-and-fix development process used all too fre-
quently: build something, test for errors, go back and fix the errors, test to find
more errors, etc. Test, fix, repeat. This goes on until company finances or other
factors dictate that the product be shipped. Sure, the result is something that
works reasonably well, as long as it is used only for the things it was tested for.

38 Part I ■ Introduction

This might be good enough for functionality, but it is wholly inadequate for
security systems.

The problem with the test-and-fix method is that testing only shows the pres-
ence of errors, and really only those errors the testers were looking for. Security
systems have to work even when under attack by clever, malicious people. The
system cannot be tested for all the situations to which the attackers will expose
the system. Testing can only test for functionality; security is the absence of
functionality. The attacker should not be able to achieve a certain property irre-
spective of what he does, yet testing cannot show the absence of functionality.
The system has to be secure from the start.

Consider the following analogy. Suppose you write a medium-sized appli-
cation in a popular programming language. You fix the syntax errors until it
compiles the first time. Then, without further testing, you put it in a box and ship
it to the customer. Nobody would expect to get a functional product that way.

Yet this is exactly what is normally done for security systems. They’re impos-
sible to test because nobody knows what to test for. By definition, an attacker
wins by finding any aspect that wasn’t tested. And if there is any bug, the prod-
uct is defective. So the only way to get a secure system is to build a very robust
system from the ground up. This requires a simple system.

The only way we know of making a system simple is to modularize it. We
all know this from software development. But this time we cannot afford any
bugs at all, so we have to be quite ruthless in the modularization. This leads us
to another rule: correctness must be a local property. In other words, one part
of the system should behave correctly regardless of how the rest of the system
works. No, we don’t want to hear ‘‘This won’t be a problem because this other
part of the system will never let this happen.’’ The other part may have a bug,
or may change in some future version. Each part of the system is responsible
for its own functionality.

2.11 Exercises

Exercise 2.1 Consider Kerckhoffs’ principle. Provide at least two arguments
in favor of Kerckhoffs’ principle and at least two arguments against Kerckhoffs’
principle.ThenstateandargueyourviewofthevalidityofKerckhoffs’principle.

Exercise 2.2 Suppose Alice and Bob are sending e-mails to each other over the
Internet. They’re sending these e-mails from their laptops, which are connected
to free wireless networks provided by their favorite coffee shops.

List all the parties who might be able to attack this system and what they
might be able to accomplish.

Describe how Alice and Bob might be able to defend against each of the
attacks you identified above. Be as specific as possible.

Chapter 2 ■ Introduction to Cryptography 39

Exercise 2.3 Consider a group of 30 people who wish to establish pair-wise
secure communications using symmetric-key cryptography. How many keys
need to be exchanged in total?

Exercise 2.4 Suppose Bob receives a message signed using a digital signa-
ture scheme with Alice’s secret signing key. Does this prove that Alice saw the
message in question and chose to sign it?

Exercise 2.5 Suppose that PKIs, as we describe in Section 2.5, do not exist.
Suppose Alice obtains a public key P that purportedly belongs to Bob. How can
Alice develop confidence that P really belongs to Bob? Consider this question
in each of the following scenarios:

Alice can talk with Bob over the phone.

Alice can talk with someone else she trusts over the phone (let’s call him
Charlie), and Charlie has already verified that P belongs to Bob.

Alice can communicate with Charlie via e-mail, and Charlie has already
verified that P belongs to Bob.

Explicitly state any additional assumptions you need to make.

Exercise 2.6 Suppose a chosen-ciphertext attacker cannot recover the secret
decryptionkey for anencryptionscheme. Does this meanthe encryptionscheme
is secure?

Exercise 2.7 Consider a symmetric-key cryptosystem in which cryptographic
keys are randomly selected from the set of all n-bit strings. Approximately what
should n be in order to provide 128 bits of security against a birthday attack?

P a r t

II
Message Security

In This Part

Chapter 3: Block Ciphers

Chapter 4: Block Cipher Modes

Chapter 5: Hash Functions

Chapter 6: Message Authentication Codes

Chapter 7: The Secure Channel

Chapter 8: Implementation Issues (I)

C H A P T E R

3

Block Ciphers

Block ciphers are one of the fundamental building blocks for cryptographic
systems. There is a lot of literature on block ciphers, and they are among the
best-understood parts of cryptography. They are, however, building blocks.
For most applications, you probably don’t want to use a block cipher directly.
Instead, you’ll want to use a block cipher in what is called a ‘‘mode of oper-
ation,’’ which we’ll discuss in subsequent chapters. This chapter is designed
to give you a firmer understanding of block ciphers: what they are, how
cryptographers view them, and how to choose between different options.

3.1 What Is a Block Cipher?

A block cipher is an encryption function for fixed-size blocks of data. The current
generation of block ciphers has a block size of 128 bits (16 bytes). These block
ciphers encrypt a 128-bit plaintext and generate a 128-bit ciphertext as the
result. The block cipher is reversible; there is a decryption function that takes
the 128-bit ciphertext and decrypts it to the original 128-bit plaintext. The
plaintext and ciphertext are always the same size, and we call this the block
size of the block cipher.

To encrypt with a block cipher, we need a secret key. Without a secret key,
there is no way to hide the message. Like the plaintext and ciphertext, the key
is also a string of bits. Common key sizes are 128 and 256 bits. We often write
E(K, p) or EK(p) for the encryption of plaintext p with key K and D(K, c) or DK(c)
for the decryption of ciphertext c with key K.

43

44 Part II ■ Message Security

Block ciphers are used for many purposes, most notably to encrypt infor-
mation. For security purposes, however, one rarely uses a block cipher
directly. Instead, one should use a block cipher mode, which we will discuss in
Chapter 4.

When using block ciphers, as with any encryption task, we always follow
Kerckhoffs’ principle and assume that the algorithms for encryption and
decryption are publicly known. Some people have a hard time accepting this,
and they want to keep the algorithms secret. Don’t ever trust a secret block
cipher (or any other secret cryptographic primitive).

It is sometimes useful to look at a block cipher as a very big key-dependent
table. For any fixed key, you could compute a lookup table that maps the
plaintext to the ciphertext. This table would be huge. For a block cipher with
32-bit block size, the table would be 16 GB; for a 64-bit block size, it would be
150 million TB; and for a 128-bit block size it would be 5 · 1039 bytes, a number
so large there is not even a proper name for it. Of course, it is not practical
to build such a table in reality, but this is a useful conceptual model. We also
know that the block cipher is reversible. In other words, no two entries of the
table are the same, or else the decryption function could not possibly decrypt
the ciphertext to a unique plaintext. This big table will therefore contain every
possible ciphertext value exactly once. This is what mathematicians call a
permutation: the table is merely a list of all the possible elements where the
order has been rearranged. A block cipher with a block size of k bits specifies
a permutation on k-bit values for each of the key values.

As a point of clarification, since it is often confused, a block cipher does not
permute the bits of the input plaintext. Rather, it takes all the 2k possible k-bit
inputs and maps each to a unique k-bit output. As a toy example, if k = 8, an
input 00000001 might encrypt to 0100000 under a given key but it might also
encrypt to 11011110 under a different key, depending on the design of the
block cipher.

3.2 Types of Attack

Given the definition of a block cipher, the definition of a secure block cipher
seems simple enough: it is a block cipher that keeps the plaintext secret.
Although this certainly is one of the requirements, it is not sufficient. This
definition only requires that the block cipher be secure against ciphertext-only
attacks, in which the attacker gets to see only the ciphertext of a message. There
are a few published attacks of this type [74, 121], but they are rare against
well-known and established block ciphers. Most published attacks are of the
chosen-plaintext type. (See Section 2.6 for an overview of attack types.) All of

Chapter 3 ■ Block Ciphers 45

these attack types apply to block ciphers, and there are a few more that are
specific to block ciphers.

The first one is the related-key attack. First introduced by Eli Biham in
1993 [13], a related-key attack assumes that the attacker has access to several
encryption functions. These functions all have an unknown key, but their keys
have a relationship that the attacker knows. This sounds very strange, but it
turns out that this type of attack is useful against real systems [70]. There are
real-world systems that use different keys with a known relationship. At least
one proprietary system changes the key for every message by incrementing the
key by one. Consecutive messages are therefore encrypted with consecutively
numbered keys. It turns out that key relationships like this can be used to
attack some block ciphers.

There are even more esoteric attack types. When we designed the Twofish
block cipher (Section 3.5.4), we introduced the concept of a chosen-key attack,
in which the attacker specifies some part of the key and then performs a
related-key attack on the rest of the key [115].1

Why would we even consider far-fetched attack types like related-key
attacks and chosen-key attacks? We have several reasons. First, we have seen
actual systems in which a related-key attack on the block cipher was possible,
so these attacks are not that far-fetched at all. In fact, we have even seen
standardized protocols that required implementations to key a block cipher
with two related keys—one key K that is chosen at random and another key
K′ that is equal to K plus a fixed constant.

Second, block ciphers are very useful building blocks. But, as building blocks,
they tend to get abused in every imaginable way. One standard technique
of constructing a hash function from a block cipher is the Davies-Meyer
construction [128]. In a Davies-Meyer hash function, the attacker suddenly
gets to choose the key of the block cipher, which allows related-key and
chosen-key attacks. We talk about hash functions in Chapter 5, but won’t go
into the details of the Davies-Meyer construction in this book. It is safe to say,
however, that any definition of block-cipher security that ignores these attack
types, or any other attack type, is incomplete.

The block cipher is a module that should have a simple interface. The
simplest interface is to ensure that it has all the properties that anyone could
reasonably expect the block cipher to have. Allowing imperfections in the block
cipher just adds a lot of complexity, in the form of cross-dependencies, to any
system using the cipher. In short, we want to over-engineer our block ciphers
for security. The challenge is to define the properties that one reasonably
expects from a block cipher.

1Later analysis showed that this attack does not work on Twofish [50], but it might be successful
against other block ciphers.

46 Part II ■ Message Security

3.3 The Ideal Block Cipher

It is actually very hard to define what a block cipher is. It is something
that you know when you see it—but can’t quite define. The theoretical
community has crystallized some of these properties into specific definitions,
like pseudorandomness and super-pseudorandomness [6, 86, 94]. The block
cipher community itself, however, uses a much broader definition, covering
things like weak keys and chosen-key attacks. Here we take the approach of
trying to help you understand what the block cipher primitives community
believes a block cipher to be. We call this an ‘‘ideal’’ block cipher.

What would the ideal block cipher look like? It should be a random
permutation. We should be more precise: for each key value, we want the
block cipher to be a random permutation, and the different permutations for
the different key values should be chosen independently. As we mentioned in
Section 3.1, you can think of a 128-bit block cipher (a single permutation on
128-bit values) as a huge lookup table of 2128 elements of 128 bits each. The
ideal block cipher consists of one of these tables for each key value, with each
table chosen randomly from the set of all possible permutations.

Strictly speaking, this definition of the ideal block cipher is incomplete, as
the exact choice of the tables has not been specified. As soon as we specify the
tables, however, the ideal cipher is fixed and no longer random. To formalize
the definition, we cannot talk about a single ideal block cipher, but have to treat
the ideal block cipher as a uniform probability distribution over the set of all
possible block ciphers. Any time that you use the ideal block cipher, you will
have to talk in terms of probabilities. This is a mathematician’s delight, but the
added complexity would make our explanations far more complicated—so
we will keep the informal but simpler concept of a randomly chosen block
cipher. We also stress that an ideal block cipher is not something that can be
obtained in practice; it is an abstract concept that we use when discussing
security.

3.4 Definition of Block Cipher Security

As noted above, there are formal definitions of security for block ciphers in
the literature. For our purposes we can use a simpler but informal definition.

Definition 1 A secure block cipher is one for which no attack exists.

This is a bit of a tautology. So now we have to define an attack on a block
cipher.

Definition 2 An attack on a block cipher is a non-generic method of distinguishing
the block cipher from an ideal block cipher.

Chapter 3 ■ Block Ciphers 47

What do we mean by distinguishing a block cipher from an ideal block
cipher? Given a block cipher X, we compare it to an ideal block cipher with
the same block size and the same key size. A distinguisher is an algorithm that
is given a black-box function that computes either the block cipher X or an
ideal block cipher. (A black-box function is a function that can be evaluated,
but the distinguisher algorithm does not know the internal workings of the
function in the black box.) Both the encryption and decryption functions are
available, and the distinguisher algorithm is free to choose any key for each
of the encryptions and decryptions it performs. The distinguisher’s task is to
figure out whether the black-box function implements the block cipher X or
the ideal cipher. It doesn’t have to be a perfect distinguisher, as long as it
provides the correct answer significantly more often than the wrong answer.

There are, of course, generic (and trivial) solutions to this. We could encrypt
the plaintext 0 with the key 0 and see if the result matches what we expect
to get from block cipher X. This is a distinguisher, but to make it an attack,
the distinguisher has to be non-generic. This is where it becomes difficult
to define block cipher security. We cannot formalize the notion of ‘‘generic’’
and ‘‘non-generic.’’ It is a bit like obscenity: we know it when we see it.2

A distinguisher is generic if we can find a similar distinguisher for almost
any block cipher. In the above case, the distinguisher is generic because we
can construct one just like it for any block cipher. This ‘‘attack’’ would even
allow us to distinguish between two ideal block ciphers. Of course, there’s no
practical reason for wanting to distinguish between two ideal block ciphers.
Rather, this attack is generic because we could use it to distinguish between
two ideal block ciphers if we wanted to. The attack doesn’t exploit any internal
property of the block cipher itself.

We can also create a more advanced generic distinguisher. Encrypt the
plaintext 0 with all keys in the range 1, . . . , 232 and count how often each
value for the first 32 bits of the ciphertext occurs. Suppose we find that for a
cipher X the value t occurs 5 times instead of the expected one time. This is a
property that is unlikely to hold for the ideal cipher, and would allow us to
distinguish X from an ideal cipher. This is still a generic distinguisher, as we
can easily construct something similar for any cipher X. (It is in fact extremely
unlikely that a cipher does not have a suitable value for t.) This attack is generic
since, the way it is described, it is applicable to all block ciphers and doesn’t
exploit a specific weakness of X. Such a distinguisher would even allow us to
distinguish between two ideal ciphers.

Things become more complicated if we design a distinguisher as follows:
We make a list of 1000 different statistics that we can compute about a cipher.
We compute each of these for cipher X, and build the distinguisher from the

2In 1964, U.S. Supreme Court judge Potter Stewart used these words to define obscenity: ‘‘I shall
not today attempt further to define the kinds of material . . .but I know it when I see it.’’

48 Part II ■ Message Security

statistic that gives the most significant result. We expect to find a statistic
with a significance level of about 1 in 1000. We can of course apply the same
technique to find distinguishers for any particular cipher, so this is a generic
attack, but the generic nature now depends not only on the distinguisher itself,
but also on how the distinguisher was found. That’s why nobody has been
able to formalize a definition of generic attacks and block cipher security. We
would love to give you a clean definition of block cipher security, but the
cryptographic community does not yet know enough about cryptography to
be able to do this in full generality. Instead, existing formal definitions often
limit the capability of an attacker. For example, existing formal definitions
might not allow chosen-key attacks. While these assumptions can hold in
some cases, we try to build block ciphers that are much stronger.

We must not forget to limit the amount of computation allowed in the
distinguisher. We could have done this explicitly in the definition, but that
would have complicated it even further. If the block cipher has an explicit
security level of n bits, then a successful distinguisher should be more efficient
than an exhaustive search on n-bit values. If no explicit design strength is
given, the design strength equals the key size. This formulation is rather
roundabout for a reason. It is tempting to just say that the distinguisher
has to work in less than 2n steps. This is certainly true, but some types of
distinguishers give you only a probabilistic result that is more like a partial
key search. The attack could have a trade-off between the amount of work and
the probability of distinguishing the cipher from the ideal cipher. For example:
an exhaustive search of half the key space requires 2n−1 work and provides
the right answer 75% of the time. (If the attacker finds the key, he knows
the answer. If he doesn’t find the key, he still has a 50% chance of guessing
right simply by guessing at random. Overall, his chances of getting the right
answer are therefore 0.5 + 0.5 · 0.5 = 0.75.) By comparing the distinguisher to
such partial key-space searches, we take this natural trade-off into account,
and stop such partial key searches from being classified as an attack.

Our definition of block cipher security covers all possible forms of attack.
Ciphertext only, known plaintext, (adaptively) chosen plaintext, related key,
and all other types of attack all implement a non-generic distinguisher. That
is why we will use this informal definition in this book. It also captures the
essence of professional paranoia that we talked about in Chapter 1; we want
to capture anything that could possibly be considered a non-generic attack.

So why spend multiple pages on defining what a secure block cipher is? This
definition is very important because it defines a simple and clean interface
between the block cipher and the rest of the system. This sort of modularization
is a hallmark of good design. In security systems, where complexity is one of
our main enemies, good modularization is even more important than in most
other areas. Once a block cipher satisfies our security definition, you can treat
it as if it were an ideal cipher. After all, if it does not behave as an ideal cipher

Chapter 3 ■ Block Ciphers 49

in the system, then you have found a distinguisher for the cipher, which means
the cipher is not secure according to our definition. If you use a secure block
cipher, you no longer have to remember any particularities or imperfections;
the cipher will have all the properties that you expect a block cipher to have.
This makes the design of larger systems easier.

Of course, some ciphers that don’t meet our stringent definition might be
‘‘good enough’’ in practice or for a specific application as currently defined,
but why take the risk? Even if the weaknesses of a particular block cipher
under our definition are highly theoretical—such as requiring an unrealistic
amount of work to exploit and thus not being very vulnerable to compromise
in practice—a block cipher that meets our definition is much more attractive.

3.4.1 Parity of a Permutation
Unfortunately, we have one more complication. As we discussed in Section 3.1,
encryption under a single key corresponds to a lookup in a permutation table.
Think about constructing this table in two steps. First you initialize the table
with the identity mapping by giving the element at index i the value i. Then you
create the permutation that you want by repeatedly swapping two elements
in the table. It turns out there are two types of permutations: those that can
be constructed from an even number of swaps (called the even permutations)
and those that can be constructed from an odd number of swaps (called the
odd permutations). It should not surprise you that half of all permutations are
even, and the other half are odd.

Most modern block ciphers have a 128-bit block size, but they operate on
32-bit words. They build the encryption function from many 32-bit operations.
This has proved to be a very successful method, but it has one side effect. It
is rather hard to build an odd permutation from small operations; as a result,
virtually all block ciphers only generate even permutations.

This gives us a simple distinguisher for nearly any block cipher, one which
we call the parity attack. For a given key, extract the permutation by encrypting
all possible plaintexts. If the permutation is odd, we know that we have
an ideal block cipher, because the real block cipher never generates an odd
permutation. If the permutation is even, we claim to have a real block cipher.
This distinguisher will be right 75% of the time. It will produce the wrong
answer only if it is given an ideal cipher that produces an even permutation.
The success rate can be improved by repeating the work for other key values.

This attack has no practical significance whatsoever. To find the parity of
a permutation, you have to compute all but one of the plaintext/ciphertext
pairs of the encryption function. (The last one is trivial to deduce: the sole
remaining plaintext maps to the sole remaining ciphertext.) You should
never allow that many plaintext/ciphertext queries to a block cipher in a real
system, because other types of attacks start to hurt much sooner. In particular,

50 Part II ■ Message Security

once the attacker knows most of the plaintext/ciphertext pairs, he no longer
needs a key to decrypt the message, but can simply use a lookup table created
from those pairs.

We could declare the parity attack to be generic by definition, but that seems
disingenuous, since the even parity of block ciphers is a peculiar artifact of
their designs. Rather, we prefer to change the definition of the ideal block
cipher, and limit it to randomly chosen even permutations.

Definition 3 An ideal block cipher implements an independently chosen random
even permutation for each of the key values.

It is a pity to complicate our ‘‘ideal’’ cipher in this way, but the only alter-
native is to disqualify nearly all known block ciphers. For the overwhelming
majority of applications, the restriction to even permutations is insignificant.
As long as we never allow all plaintext/ciphertext pairs to be computed, even
and odd permutations are indistinguishable.

If you ever have a block cipher that can generate odd permutations, you
should revert to the original definition of the ideal cipher. In practice, parity
attacks have more effect on the formal definition of security than on real-world
systems, so you can probably forget about this whole issue of parity.

This discussion also serves as another example of how cryptographers think.
It is more important to exhibit professional paranoia and consider a superset
of realistic attacks, and then pare away the unrealistic ones, than to start with
only realistic attacks and try to find new ones.

3.5 Real Block Ciphers

There are hundreds of block ciphers that have been proposed over the years.
It is very easy to design a new block cipher. It is fiendishly hard to design a
good new block cipher. We’re not merely talking about security; that a block
cipher has to be secure goes without saying. Building a secure block cipher is a
challenge unto itself. But it becomes even more difficult to create a block cipher
that is efficient in a wide variety of different applications. (We previously said
that we’d give up performance for security. We would. But when possible, we
still prefer both.)

Designing block ciphers can be fun and educational, but one shouldn’t use
an unknown cipher in a real system. The cryptographic community doesn’t
trust a cipher until it has been reviewed thoroughly by other experts. A basic
prerequisite is that the cipher has been published, but this is not enough. There
are so many ciphers out there that few get any effective peer review. You are
much better off using one of the well-known ciphers that already has been
reviewed for you.

Virtually all block ciphers consist of several repetitions of a weak block
cipher, known as a round. Several of these weak rounds in sequence make a

Chapter 3 ■ Block Ciphers 51

strong block cipher. This structure is easy to design and implement, and is also
a great help in the analysis. Most attacks on block ciphers begin by attacking
versions with a reduced number of rounds. As the attacks improve, more and
more rounds can be attacked.

We will discuss several block ciphers in more detail, but we won’t define
them exhaustively. The full specifications can be found in the references or
on the Internet. We will instead concentrate on the overall structure and the
properties of each cipher.

3.5.1 DES

The venerable workhorse of cryptography, the Data Encryption Standard
(DES) [96] has finally outlived its usefulness. Its restricted key size of 56 bits
and small block size of 64 bits make it unsuitable for today’s fast computers
and large amounts of data. It survives in the form of 3DES [99], which is a
block cipher built from three DES encryptions in sequence—encrypt with DES
with one 56-bit key, decrypt with a second 56-bit key, and then encrypt again
either with the first key or a third 56-bit key. This solves the most immediate
problem of the small key size, but there is no known fix for the small block
size. DES is not a particularly fast cipher by current standards, and 3DES is
one-third the speed of DES. You will still find DES in many systems, but we
do not recommend using either DES or 3DES in new designs. It is, however, a
classic design worth studying in its own right.

Figure 3.1 gives an overview of a single round of DES. This is a line diagram
of the DES computations; you will commonly find diagrams like this in
cryptographic literature. Each box computes a particular function, and the
lines show which value is used where. There are a few standard conventions.
The xor or exclusive-or operation, sometimes called bitwise addition or
addition without carry, is shown in formulas as a ⊕ operator and in figures as
a large version of the ⊕ operator. You might also find drawings that include
integer additions, which often are drawn to look like the � operator.

S

F

L R
Ki

Bit shuffle Expand

Figure 3.1: Structure of a single round of DES

52 Part II ■ Message Security

DES has a 64-bit plaintext, which is split into two 32-bit halves L and
R. This splitting is done by rearranging the bits in a semi-ordered fashion.
Nobody seems to know why the designers bothered to rearrange the bits of
the plaintext—it has no cryptographic effect—but that’s how DES is defined.
A similar swapping of bits is implemented at the end of the encryption to
create the 64-bit ciphertext from the two halves L and R.

DES consists of 16 rounds numbered 1 through 16. Each round i uses a
separate 48-bit round key Ki. Each round key is formed by selecting 48 bits
from the 56-bit key, and this selection is different for each round key.3 The
algorithm that derives these round keys from the main block cipher key is
called the key schedule.

Round i transforms the (L, R) pair into a new (L, R) pair under control of a
round key Ki. Most of the work is done by the round function F, shown in the
dashed box. As shown in the figure, the R value is first processed by an expand
function, which duplicates a number of bits to produce 48 bits of output from
the 32-bit input. The 48-bit result is xored with the 48-bit round key Ki. The
result of this is used in the S-box tables. An S-box (the term derives from substi-
tution box) is basically just a lookup table that is publicly known. As you cannot
build a lookup table with 48 input bits, the S-boxes consist of eight small lookup
tables, each of which maps 6 bits to 4 bits. This brings the result size back to 32
bits. These 32 bits are then swapped around by the bit shuffle function before
being xored into the left value L. Finally, the values of L and R are swapped.
This entire computation is repeated 16 times for a single DES encryption.

The basic structure of DES is called the Feistel construction [47]. It is a really
elegant idea. Each round consists of xoring L with F(Ki, R) for some function F,
and then swapping L and R. The beauty of the construction is that decryption
requires exactly the same set of operations as encryption. You need to swap
L and R, and you need to xor L with F(Ki, R). This makes it much easier to
implement the encryption and decryption functions together. It also means
that you only have to analyze one of the two functions, as they are almost
identical. A final trick used in most Feistel ciphers is to leave out the swap
after the last round, which makes the encryption and decryption functions
identical except for the order of the round keys. This is particularly nice for
hardware implementations, as they can use the same circuit to compute both
encryptions and decryptions.

The different parts of the DES cipher have different functions. The Feistel
structure makes the cipher design simpler and ensures that the two halves L
and R are mixed together. Xoring the key material ensures that the key and
data are mixed, which is the whole point of a cipher. The S-boxes provide
nonlinearity. Without them, the cipher could be written as a bunch of binary
additions, which would allow a very easy mathematical attack based on linear

3There is some structure to this selection, which you can find in the DES specifications [96].

Chapter 3 ■ Block Ciphers 53

algebra. Finally, the combination of the S-box, expand, and bit shuffle functions
provide diffusion. They ensure that if one bit is changed in the input of F, more
than one bit is changed in the output. In the next round there will be more bit
changes, and even more in the round after that, etc. Without good diffusion, a
small change in the plaintext would lead to a small change in the ciphertext,
which would be very easy to detect.

DES has a number of properties that disqualify it according to our security
definition. Each of the round keys consists purely of some of the bits selected
from the cipher key. If the cipher key is 0, then all the round keys are 0 as
well. In particular, all the round keys are identical. Remember that the only
difference between encryption and decryption is the order of the round keys.
But all round keys are zero here. So encryption with the 0 key is the same
function as decryption with the 0 key. This is a very easy property to detect,
and as an ideal block cipher does not have this property, it leads to an easy
and efficient distinguishing attack.4

DES also has a complementation property that ensures that

E(K, P) = E(K, P)

for all keys K and plaintexts P, where X is the value obtained by complementing
all the bits in X. In other words, if you encrypt the complement of the plaintext
with the complement of the key, you get the complement of the (original)
ciphertext.

This is rather easy to see. Look at the figure and think about what happens
if you flip all the bits in L, R, and Ki. The expand function merely copies bits
around, so all the output bits are also flipped. The xor with the key Ki has
both inputs flipped, so the output remains the same. The input to the S-boxes
remains the same, the output of the S-boxes remains the same, so the final xor
has one input that is flipped and one input that is the same. The new L value,
soon to be swapped to the R position, is therefore also flipped. In other words,
if you complement L and R at the beginning of the round and complement Ki

as well, then the output is the complement of what you had originally. This
property passes through the entire cipher.

The ideal block cipher would not have this curious property. More impor-
tantly, this particular property can lead to attacks on systems that use DES.

In short, DES does not pass muster anymore. The above properties disqualify
DES according to our security definition. But even ignoring the properties
above, the DES key length is wholly inadequate. There have already been
several successful attempts to find a DES key by simple exhaustive search [44].

3DES has a larger key, but it inherits both the weak keys and the com-
plementation property from DES, each of which is enough to disqualify the

4There are three other keys that have this property; together, they are called the weak keys of
DES.

54 Part II ■ Message Security

cipher by our standards. It is also severely limited by its 64-bit block size,
which imposes severe restrictions on the amount of data we can encrypt with
a single key. (See Section 4.8 for details.) Sometimes you have to use 3DES in a
design for legacy reasons, but be very careful with it because of its small block
size and because it does not behave like an ideal block cipher.

3.5.2 AES
The Advanced Encryption Standard (AES) is the U.S. government standard
created to replace DES. Instead of designing or commissioning a cipher, the U.S.
National Institute of Standards and Technology (NIST) asked for proposals
from the cryptographic community. A total of 15 proposals were submitted
[98]. Five ciphers were selected as finalists [100], after which Rijndael was
selected to become AES.5 AES became a standard in 2001.

AES uses a different structure than DES. It is not a Feistel cipher. Figure 3.2
shows a single round of AES. The subsequent rounds are similar. The plaintext
comes in as 16 bytes (128 bits) at the very top. The first operation is to xor the
plaintext with 16 bytes of round key. This is shown by the ⊕ operators; the key
bytes come into the side of the xors. Each of the 16 bytes is then used as an
index into an S-box table that maps 8-bit inputs to 8-bit outputs. The S-boxes
are all identical. The bytes are then rearranged in a specific order that looks
a bit messy but has a simple structure. Finally, the bytes are mixed in groups
of four using a linear mixing function. The term linear just means that each
output bit of the mixing function is the xor of several of the input bits.

S

Mix Mix Mix Mix

S S S S S S S S S S S S S S S

Figure 3.2: Structure of a single round of AES

5There has been some confusion about the correct pronunciation of ‘‘Rijndael.’’ Don’t worry; it’s
hard to pronounce unless you speak Dutch, so just relax and pronounce it any way you like, or
just call it ‘‘AES.’’

Chapter 3 ■ Block Ciphers 55

This completes a single round. A full encryption consists of 10–14 rounds,
depending on the size of the key. AES is defined for 128-, 192-, and 256-bit
keys, and uses 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14
rounds for 256-bit keys. Like DES, there is a key schedule that generates the
necessary round keys, but the key schedule uses a very different structure.

The AES structure has advantages and disadvantages. Each step consists
of a number of operations that can be performed in parallel. This parallelism
makes high-speed implementations easy. On the other hand, the decryption
operation is significantly different from the encryption operation. You need
the inverse lookup table of the S-box, and the inverse mixing operation is
different from the original mixing operation.

We can recognize some of the same functional blocks as in DES. The xors
add key material to the data, the S-boxes provide nonlinearity, and the byte
shuffle and mixing functions provide diffusion. AES is a very clean design
with clearly separated tasks for each part of the cipher.

AES has always been a fairly aggressively designed cipher. In the original
presentation, the AES designers showed an attack on 6 rounds. This means
that the designers knew of an attack if AES was defined to have only 6 rounds.
The authors therefore chose 10–14 rounds for the full cipher, depending on
the key size [27].

During the AES selection process, the attacks were improved to handle
7 rounds for 128-bit keys, 8 rounds for 192-bit keys, and 9 rounds for 256-
bit keys [49]. This still left a 3 to 5 round security margin. From a different
perspective: for 128-bit keys, the best attack we knew when Rijndael was
selected as AES covered 70% of the cipher. In other words, the selection of
Rijndael as AES relied on the assumption that future attacks would not give
large improvements.

Will AES stand the test of time? It is, as always, impossible to predict the
future, but sometimes it helps to look at the past. Until recently, the best-
analyzed ciphers were DES, FEAL, and IDEA. In all cases, the attacks were
significantly improved many years after the initial publication. Since then, the
field has progressed, but it still takes a leap of faith to think we know it all and
that no significant improvements in attacks will be found.

In fact, at the time of this writing we are starting to see some pretty amazing
breakthroughs in the cryptanalysis of AES [14, 15, 16]. One attack can break
the full 12 rounds of AES with 192-bit keys using four related keys and 2176

operations, and another attack can break the full 14 rounds of AES with 256-bit
keys using four related keys and 2119 operations [15]. Another attack can break
10 of the 14 rounds of AES with 256-bit keys using two related keys and only
245 operations [14].

These are huge results. They mean we now know AES does not meet our
definition of security for a block cipher. The attacks against the full 192- and
256-bit versions of AES are theoretical—not practical—so we aren’t ready to

56 Part II ■ Message Security

lose any sleep over them just yet. But they are attacks under our definition, so
192- and 256-bit AES have theoretically been broken. And even better attacks
might be discovered over time.

The community is still trying to come to grips with what these results mean
for the use of AES in a real system. Given all that we know today, using
AES still seems like a reasonable decision. It is the U.S. government standard,
which means a great deal. Using the standard avoids a number of discussions
and problems. But it is important to realize it is still possible that future
cryptanalytic advances may uncover even more serious weaknesses. If you are
developing a system or standardizing a protocol, we recommend building in
some flexibility or extensibility in case you need to replace AES with another
block cipher in the future. We will come back to this in Section 3.5.6.

3.5.3 Serpent
Serpent was another AES finalist [1]. It is built like a tank. Easily the most
conservative of all the AES submissions, Serpent is in many ways the opposite
of AES. Whereas AES puts emphasis on elegance and efficiency, Serpent is
designed for security all the way. The best attack we know of covers only 12 of
the 32 rounds [38]. The disadvantage of Serpent is that it is about one-third the
speed of AES. It can also be difficult to implement efficiently, as the S-boxes
have to be converted to a Boolean formula suitable for the underlying CPU.

In some ways, Serpent has a similar structure to AES. It consists of 32 rounds.
Each round consists of xoring in a 128-bit round key, applying a linear mixing
function to the 128 bits, and then applying 32 four-bit S-boxes in parallel. In
each round, the 32 S-boxes are identical, but there are eight different S-boxes
that are used each in turn in a round.

Serpent has an especially nice software implementation trick. A straightfor-
ward implementation would be very slow, as each round requires 32 S-box
lookups and there are 32 rounds. In total there are 1024 S-box lookups, and
doing those one by one would be very slow. The trick is to rewrite the S-boxes
as Boolean formulas. Each of the four output bits is written as a Boolean
formula of the four input bits. The CPU then evaluates this Boolean formula
directly, using and, or, and xor instructions. The trick is that a 32-bit CPU can
evaluate 32 S-boxes in parallel, as each bit position in the registers computes
the same function, albeit on different input data. This style of implementation
is called a bitslice implementation. Serpent is specifically designed to be imple-
mented in this way. The mixing phase is relatively easy to compute in a bitslice
implementation.

If Serpent had been as fast as Rijndael (now AES), it would almost certainly
have been chosen as AES because of its conservative design. But speed is

Chapter 3 ■ Block Ciphers 57

always a relative thing. When measured per encrypted byte, Serpent is nearly
as fast as DES and much faster than 3DES. It is only when Serpent is compared
to the other AES finalists that it seems slow.

3.5.4 Twofish
Twofish was an AES finalist as well. It can be seen as a compromise between
AES and Serpent. It is nearly as fast as AES, but it has a larger security margin.
The best attack we know of is on 8 of the 16 rounds. The biggest disadvantage
of Twofish is that it can be rather expensive to change the encryption key, as
Twofish is best implemented with a lot of precomputation on the key.

Twofish uses the same Feistel structure as DES. An overview is given in
Figure 3.3.6 Twofish splits the 128-bit plaintext into four 32-bit values, and
most operations are on 32-bit values. You can see the Feistel structure of
Twofish, with F being the round function. The round function consists of two
copies of the g function, a function called the PHT, and a key addition. The
result of the F function is xored into the right half (the two vertical lines on
the right). The boxes with ≪ or ≫ symbols in them denote rotations of the
32-bit value by the specified number of bit positions.

Each g function consists of four S-boxes followed by a linear mixing function
that is very similar to the AES mixing function. The S-boxes are somewhat
different. In contrast to all the other block ciphers we have seen in this book,
these S-boxes are not constant; rather, their contents depend on the key. There
is an algorithm that computes the S-box tables from the key material. The
motivation for this design is that key-dependent S-boxes are much harder for
an attacker to analyze. This is also why Twofish implementations often do
precomputations for each key. They precompute the S-boxes and store the
result in memory.

The PHT function mixes the two results of the g functions using 32-bit
addition operations. The last part of the F function is where the key material
is added. Note that addition is shown as � and exclusive or as ⊕.

Twofish also uses whitening. At both the start and the end of the cipher,
additional key material is added to the data. This makes the cipher harder to
attack for most types of attacks, and it costs very little.

As with the other ciphers, Twofish has a key schedule to derive the round
keys and the two additional keys at the start and end from the actual cipher
key.

6There is a reason why this figure is so much larger and detailed than the others. Two of
us were on the Twofish design team, so we could lift this figure straight from our Twofish
book [115].

58 Part II ■ Message Security

P (128 bits)

C (128 bits)

K0 K1

F
s0

s1

s2

s3

s0

s1

s2

s3

MDS

g

<<<8

PHT

K2r + 8

K2r + 9

input
whitening

one
round

15 more
rounds

undo last
swap

output
whitening

K4 K5 K6 K7

K2 K3

MDS

g

<<<1

>>>1

Figure 3.3: Structure of Twofish
© 1999, Niels Ferguson, John Wiley and Sons. Used with permission.

3.5.5 Other AES Finalists
We have discussed three of the five AES finalists in some detail. There were
two more: RC6 [108] and MARS [22].

RC6 is an interesting design that uses 32-bit multiplications in the cipher.
During the AES competition, the best attack broke a 17-round version of RC6,
compared to 20 rounds of the full RC6. MARS is a design with a nonuniform
structure. It uses a large number of different operations and is therefore more
expensive to implement than the other AES finalists.

Both RC6 and MARS were selected as AES finalists for a reason: They are
both probably good block ciphers. Details about their internal operations are
in their respective specifications.

Chapter 3 ■ Block Ciphers 59

3.5.6 Which Block Cipher Should I Choose?
The recent cryptanalytic advances against AES make this a tough choice.
Despite these cryptanalytic advances, AES is still what we recommend. It is fast.
All known attacks are theoretical, not practical. Even though AES is now broken
academically, these breaks do not imply a significant security degradation of
real systems in practice. It is also the official standard, sanctioned by the U.S.
government. And everybody else is using it. They used to say ‘‘Nobody gets
fired for buying IBM.’’ Similarly, nobody will fire you for choosing AES.

AES has other advantages. It is relatively easy to use and implement. All
cryptography libraries support it, and customers like it, because it is ‘‘the
standard.’’

There are probably circumstances in which 3DES still is the best solution. If
you have to be backward-compatible, or are locked into a 64-bit block size by
other parts of the system, then 3DES is still your best choice. However, keep
in mind that 3DES has some unique properties that cause it to not satisfy our
security criteria; and be especially careful with the small 64-bit block size.

If you are really concerned about future cryptanalytic advances, you could
always double encrypt—first with AES and then with Serpent or Twofish.
If you do this, remember to use different, independent keys for each block
cipher. Or use AES with an increased number of rounds—say, 16 rounds for
AES with 128-bit keys, 20 rounds for AES with 192-bit keys, and 28 rounds for
AES with 256-bit keys.

Further, remember that the recent cryptanalytic advances against AES are
only just coming out as we finalize this book. It is too early to tell exactly
how the community will respond. Keep an eye out for a general consensus or
shift in direction from the community. Perhaps NIST will issue some specific
recommendations for how to address the recent discoveries against AES. If
NIST makes recommendations on how to respond to the new attacks against
AES, or if there is a clear shift in the consensus of the community, no one will
fault you for following those recommendations or that shift.

We also need to return to one other issue with AES. We haven’t talked much
about side-channel or timing attacks yet (we’ll talk about these in Sections 8.5
and 15.3). It turns out that even though there are no known practical attacks
against the mathematics of AES, it is possible to implement AES poorly. For
example, it is possible to implement AES such that the time it takes to perform
an operation depends on its inputs—on some inputs it will take more time
and on other inputs it will take less time. If an attacker can measure the
time a system takes to perform an AES operation, she might be able to learn
bits of the key. If you use AES, you should be careful to use a constant-
time implementation, or to otherwise conceal the timing information from an
attacker.

60 Part II ■ Message Security

3.5.7 What Key Size Should I Use?
All of the AES finalists (Rijndael, Serpent, Twofish, RC6, and MARS), and
hence AES, support keys of 128, 192, and 256 bits. For almost all applications,
a 128-bit security level is enough. However, to achieve 128 bits of security, we
suggest keys longer than 128 bits.

A 128-bit key would be great, except for one problem: collision attacks. Time
and time again, we find systems that can be attacked—at least theoretically, if
not practically—by a birthday attack or a meet-in-the-middle attack. We know
these attacks exist. Sometimes designers just ignore them, and sometimes they
think they are safe, but somebody finds a new, clever way of using them. Most
block cipher modes allow meet-in-the-middle attacks of some form. We’ve
had enough of this race, so here is our recommendation: For a security level of
n bits, every cryptographic value should be at least 2n bits long.

Following this recommendation makes any type of collision attack useless.
In real life, it is hard to keep strictly to this rule. For 128-bit security, we really
want to use a block cipher with a block size of 256 bits, but all the common
block ciphers have a block size of 128 bits. This is more serious than it sounds.
There are quite a number of collision attacks on block cipher modes, which we
will learn about later.

Still, at least we can use the large keys that all AES candidate block ciphers
support. Therefore: use 256-bit keys! We are not saying that 128-bit keys are
insecure per se; we are saying that 256-bit keys provide a better safety margin,
assuming that the block cipher is secure.

Note that we advocate the use of 256-bit keys for systems with a design
strength of 128 bits. In other words, these systems are designed to withstand
attackers that can perform 2128 operations in their attack. Just remember to use
the design strength (128 bits), not the key length of 256 bits, for sizing the rest
of the system.

Finally, let’s come back to the recent cryptanalytic results against AES. These
results show that AES with 192- and 256-bit keys are not secure. Moreover,
the attacks against AES with 192- and 256-bit keys exploit weaknesses in the
AES key schedule algorithm. This is why the known attacks against AES with
256-bit keys are more efficient than the attacks against AES with 192-bit keys.
This is also why we don’t yet know of attacks against AES with 128-bit keys.
So, while in general we’d prefer a block cipher with 256-bit keys over a block
cipher with 128-bit keys, assuming the block cipher is secure, the situation is a
bit more murky for AES. To emphasize our desire for 128 bits of security, and
thus our quest for a secure block cipher with 256-bit keys, we will use AES
with 256-bit keys throughout the rest of this book. But once there is a clear
consensus of how to respond to the new cryptanalytic results against AES, we
will likely replace AES with another block cipher with 256-bit keys.

Chapter 3 ■ Block Ciphers 61

3.6 Exercises

Exercise 3.1 How much space would be required to store a table for an entire
idealized block cipher that operates on 64-bit blocks and that has 80-bit keys?

Exercise 3.2 How many rounds are in DES? How many bits are in a DES
key? What is the DES block size? How does 3DES work as a function of DES?

Exercise 3.3 What are the possible lengths for AES keys? For each key length,
how many rounds are in AES? What is the AES block size?

Exercise 3.4 Under what situations might you choose 3DES over AES? Under
what situations might you chose AES over 3DES?

Exercise 3.5 Suppose you have a processor that can perform a single DES
encryption or decryption operation in 2−26 seconds. Suppose you also have a
large number of plaintext-ciphertext pairs for DES under a single, unknown
key. How many hours would it take, on average, to find that DES key, using an
exhaustive search approach and a single processor? How many hours would
it take, on average, to find that DES key, using an exhaustive search approach
and a collection of 214 processors?

Exercise 3.6 Consider a new block cipher, DES2, that consists only of two
rounds of the DES block cipher. DES2 has the same block and key size as
DES. For this question you should consider the DES F function as a black box
that takes two inputs, a 32-bit data segment and a 48-bit round key, and that
produces a 32-bit output.

Suppose you have a large number of plaintext-ciphertext pairs for DES2
under a single, unknown key. Give an algorithm for recovering the 48-bit round
key for round 1 and the 48-bit round key for round 2. Your algorithm should
require fewer operations than an exhaustive search for an entire 56-bit DES key.
Can your algorithm be converted into a distinguishing attack against DES2?

Exercise 3.7 Describe an example system that uses DES but is insecure
because of the DES complementation property. Specifically, describe the
system, and then present an attack against that system; the attack should
utilize the DES complementation property.

Exercise 3.8 Familiarize yourself with a cryptographic software development
package for your computer. A popular open source package is OpenSSL,
though there are numerous other alternatives.

Using an existing cryptography library, decrypt the following ciphertext (in
hex)

53 9B 33 3B 39 70 6D 14 90 28 CF E1 D9 D4 A4 07

62 Part II ■ Message Security

with the following 256-bit key (also in hex)

80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

using AES.

Exercise 3.9 Using an existing cryptography library, encrypt the following
plaintext (in hex)

29 6C 93 FD F4 99 AA EB 41 94 BA BC 2E 63 56 1D

with the following 256-bit key (also in hex)

80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

using AES.

Exercise 3.10 Write a program that experimentally demonstrates the comple-
mentation property for DES. This program should take as input a key K and
a plaintext P and demonstrate that the DES complementation property holds
for this key and plaintext. You may use an existing cryptography library for
this exercise.

C H A P T E R

4

Block Cipher Modes

Block ciphers encrypt only fixed-size blocks. If you want to encrypt something
that isn’t exactly one block long, you have to use a block cipher mode. That’s
another name for an encryption function built using a block cipher.

Before proceeding with this chapter, we have one word of warning. The
encryption modes that we talk about in this chapter prevent an eavesdropper
from reading the traffic. They do not provide any authentication, so an
attacker can still change the message—sometimes in any way she wants.
Many people find this surprising, but this is simple to see. The decryption
function of an encryption mode simply decrypts the data. It might produce
nonsense, but it still decrypts a (modified) ciphertext to some (modified and
possibly nonsensical) plaintext. You should not rely on the fact that nonsensical
messages do no harm. That involves relying on other parts of the system,
which all too often leads to grief. Furthermore, for some encryption schemes,
the modified ciphertexts may not decrypt to garbage; some modes allow
targeted plaintext changes and many data formats can be manipulated even
with locally randomizing changes.

In almost all situations, the damage that modified messages can do is far
greater than the damage of leaking the plaintext. Therefore, you should always
combine encryption with authentication. The modes we discuss here should
be combined with a separate authentication function, which we discuss in
Chapter 6.

63

64 Part II ■ Message Security

4.1 Padding

In general, a block cipher mode is a way to encrypt a plaintext P to a ciphertext
C, where the plaintext and ciphertext are of an arbitrary length. Most modes
require that the length of the plaintext P be an exact multiple of the block size.
This requires some padding. There are many ways to pad the plaintext, but the
most important rule is that the padding must be reversible. It must be possible
to uniquely determine the original message from a padded message.

We sometimes see a very simple padding rule that consists of appending
zeros until the length is suitable. This is not a good idea. It is not reversible, as
the plaintext p and p ‖ 0 have the same padded form. (We use the operator ‖
to denote concatenation.)

Throughout this book, we will only consider plaintexts that are an integral
number of bytes long. Some cryptographic primitives are specified for odd
sizes where the last byte is not fully used. We have never found this general-
ization useful, and it often is a hindrance. Many implementations do not allow
for these odd sizes in any case, so all our sizes will be in bytes.

It would be nice to have a padding rule that does not make the plaintext
any longer if it already has a suitable length. This is not possible to achieve for
all situations. You can show that at least some messages that are already of
a suitable length must be lengthened by any reversible padding scheme, and
in practice all padding rules add a minimum of one byte to the length of the
plaintext.

So how do we pad a plaintext? Let P be the plaintext and let �(P) be the
length of P in bytes. Let b be the block size of the block cipher in bytes. We
suggest using one of two simple padding schemes:

1. Append a single byte with value 128, and then as many zero bytes as
required to make the overall length a multiple of b. The number of zero
bytes added is in the range 0, . . . , b − 1.

2. Determine the number of padding bytes required. This is a number n
which satisfies 1 ≤ n ≤ b and n + �(P) is a multiple of b. Pad the plaintext
by appending n bytes, each with value n.

Either padding scheme works just fine. There are no cryptographic ramifica-
tions to padding. Any padding scheme is acceptable, as long as it is reversible.
The two we gave are just the simplest ones. You could also include the length
of P at the beginning, and then P, and then pad to a block boundary. This
assumes that you know the length of P when you start processing the data,
which you might not.

Once the padded length is a multiple of the block size, we cut the padded
plaintext into blocks. The plaintext P is thereby turned into a sequence of
blocks P1, . . . , Pk. The number of blocks k can be computed as �(�(P) + 1)/b	,

Chapter 4 ■ Block Cipher Modes 65

where �· · ·	 denotes the ceiling function that rounds a number upward to the
next integer. For most the rest of this chapter we will simply assume that
the plaintext P consists of an integral number of blocks P1, . . . , Pk.

After decrypting the ciphertext using one of the block cipher modes we
will discuss, the padding has to be removed. The code that removes the
padding should also check that the padding was correctly applied. Each of
the padding bytes has to be verified to ensure it has the correct value. An
erroneous padding should be treated in the same manner as an authentication
failure.

4.2 ECB

The simplest method to encrypt a longer plaintext is known as the electronic
codebook mode, or ECB. This is defined by

Ci = E(K, Pi) for i = 1, . . . , k

This is quite simple: you just encrypt each block of the message separately.
Of course, things cannot be so simple, or we would not have allocated an
entire chapter to the discussion of block cipher modes. Do not ever use ECB
for anything. It has serious weaknesses, and is only included here so that we
can warn you away from it.

What is the trouble with ECB? If two plaintext blocks are the same, then
the corresponding ciphertext blocks will be identical, and that is visible to the
attacker. Depending on the structure of the message, this can leak quite a lot
of information to the attacker.

There are many situations in which large blocks of text are repeated. For
example, this chapter contains the words ‘‘ciphertext block’’ many times. If
two of the occurrences happen to line up on a block boundary, then a plaintext
block value will be repeated. In most Unicode strings, every other byte is a
zero, which greatly increases the chance of a repeated block value. Many file
formats will have large blocks of only zeros, which result in repeated block
values. In general, this property of ECB makes it too weak to use.

4.3 CBC

The cipher block chaining (CBC) mode is one of the most widely used block
cipher modes. The problems of ECB are avoided by xoring each plaintext
block with the previous ciphertext block. The standard formulation of CBC is
as follows:

Ci = E(K, Pi ⊕ Ci−1) for i = 1, . . . , k

66 Part II ■ Message Security

The problems of ECB are avoided by ‘‘randomizing’’ the plaintext using
the previous ciphertext block. Equal plaintext blocks will typically encrypt to
different ciphertext blocks, significantly reducing the information available to
an attacker.

We are still left with the question of which value to use for C0. This value
is called the initialization vector, or IV. We discuss strategies for picking the IV
below.

4.3.1 Fixed IV
You should not use a fixed IV, as that introduces the ECB problem for the
first block of each message. If two different messages start with the same
plaintext block, their encryptions will start with the same ciphertext blocks. In
real life, messages often start with similar or identical blocks, and we do not
want the attacker to be able to detect this.

4.3.2 Counter IV
An alternative idea we sometimes see is to use a counter for the IV. Use IV = 0
for the first message, IV = 1 for the second message, etc. Again, this is not a very
good idea. As we mentioned, many real-life messages start in similar ways.
If the first blocks of the messages have simple differences, then the simple
IV counter could very well cancel the differences in the xor, and generate
identical ciphertext blocks again. For example: the values 0 and 1 differ in
exactly one bit. If the leading plaintext blocks of the first two messages also
differ in only this bit (which happens much more often than you might expect),
then the leading ciphertext blocks of the two messages will be identical. The
attacker can promptly draw conclusions about the differences between the
two messages, something a secure encryption scheme should not allow.

4.3.3 Random IV
The problems with ECB and fixed-IV or counter-IV CBC both stem from the
fact that plaintext messages are highly nonrandom. Very often they have a
fixed value header, or a very predictable structure. A chosen plaintext attacker
could even exert control over the structure of the plaintext. In CBC, the
ciphertext blocks are used to ‘‘randomize’’ the plaintext blocks, but for the first
block we have to use the IV. This suggests that we should choose a random IV.

This leads to another problem. The recipient of the message needs to know
the IV. The standard solution is to choose a random IV and to send it as a

Chapter 4 ■ Block Cipher Modes 67

first block before the rest of the encrypted message. The resulting encryption
procedure is as follows:

C0 := random block value
Ci := E(K, Pi ⊕ Ci−1) for i = 1, . . . , k

with the understanding that the (padded) plaintext P1, . . . , Pk is encrypted as
C0, . . . , Ck. Note that the ciphertext starts at C0 and not C1; the ciphertext is one
block longer than the plaintext. The corresponding decryption procedure is
easy to derive:

Pi := D(K, Ci) ⊕ Ci−1 for i = 1, . . . , k

The principal disadvantage of a random IV is that the ciphertext is one
block longer than the plaintext. For short messages, this results in a significant
message expansion, which is always undesirable.

4.3.4 Nonce-Generated IV
Here is another solution to the IV problem. The solution consists of two steps.
First, each message that is to be encrypted with this key is given a unique
number called a nonce. The term is a contraction of ‘‘number used once.’’ The
critical property of a nonce is that it is unique. You should never use the same
nonce twice with the same key. Typically, the nonce is a message number of
some sort, possibly combined with some other information. Message numbers
are already available in most systems, as they are used to keep the messages
in their correct order, detect duplicate messages, etc. The nonce does not have
to be secret, but it can be used only once.

The IV necessary for CBC encryption is generated by encrypting the nonce.
In a typical scenario, the sender numbers the messages consecutively and

includes the message number in each transmission. The following steps should
be used to send a message:

1. Assign a message number to this message. Typically, the message number
is provided by a counter that starts at 0. Note that the counter should never
be allowed to wrap around back to 0, as that would destroy the uniqueness
property.

2. Use the message number to construct a unique nonce. For a given key, the
nonce should be unique in the entire system, not just on this computer.
For example, if the same key is used to encrypt traffic in two directions,
then the nonce should consist of the message number plus an indication of
which direction this message is being sent in. The nonce should be as large
as a single block of the block cipher.

68 Part II ■ Message Security

3. Encrypt the nonce with the block cipher to generate the IV.

4. Encrypt the message in CBC mode using this IV.

5. Add enough information to the ciphertext to ensure that the receiver can
reconstruct the nonce. Typically this involves adding the message number
just in front of the ciphertext, or using a reliable transport method for
communicating the ciphertext, in which case the message number might
be implicit. The IV value itself (C0 in our equations) does not have to be
sent.

The extra information that needs to be included in the message is usually
much smaller than in the random IV case. For most systems, a message counter
of 32–48 bits is sufficient, compared to a 128-bit random IV overhead for the
random IV solution. Most practical communications systems need a message
counter anyway, or use a reliable transport with an implicit counter, so the
generated IV solution adds no message overhead.

If the attacker has complete control over the nonce, then the nonce should be
encrypted with a separate key when generating the IV. Any practical system
would need to ensure nonce uniqueness anyway, however, and hence would
not allow arbitrary nonce choices. So in most situations we would use the
same key to encrypt the nonce as we use to encrypt the message itself.

4.4 OFB

So far the modes have all taken the message and encrypted it by applying
the block cipher to the message blocks in some way. Output feedback mode, or
OFB, is different in that the message itself is never used as an input to the block
cipher. Instead, the block cipher is used to generate a pseudorandom stream
of bytes (called the key stream), which in turn is xored with the plaintext to
generate the ciphertext. An encryption scheme that generates such a random
key stream is called a stream cipher. Some people seem to think that stream
ciphers are bad in some way. Not at all! Stream ciphers are extremely useful,
and do their work very well. They just require a bit of care in their use. Abuse
of a stream cipher, mostly in the form of reusing a nonce, can very easily lead
to an insecure system. A mode like CBC is more robust in the sense that even
when abused it still does a pretty good job. Still, the advantages of stream
ciphers often outweigh their disadvantages.

OFB is defined by:

K0 := IV
Ki := E(K, Ki−1) for i = 1, . . . , k
Ci := Pi ⊕ Ki

Chapter 4 ■ Block Cipher Modes 69

Here too, there is an IV K0 which is used to generate the key stream K1, . . . , Kk

by repeatedly encrypting the value. The key stream is then xored with the
plaintext to generate the ciphertext.

The IV value has to be random, and as with CBC it can either be chosen
randomly and transmitted with the ciphertext (see Section 4.3.3), or it can be
generated from a nonce (see Section 4.3.4).

One advantage of OFB is that decryption is exactly the same operation as
encryption, which saves on implementation effort. Especially useful is that
you only need to use the encryption function of the block cipher, so you don’t
even have to implement the decryption function.

A second advantage is that you don’t need any padding. If you think of the
key stream as a sequence of bytes, then you can use as many bytes as your
message is long. In other words, if the last plaintext block is only partially full,
then you only send the ciphertext bytes that correspond to actual plaintext
bytes. The lack of padding reduces the overhead, which is especially important
with small messages.

OFB also demonstrates the one danger of using a stream cipher. If you ever
use the same IV for two different messages, they will be encrypted with the
same key stream. This is very bad indeed. Let us suppose that two messages
are the plaintexts P and P′, and they have been encrypted using the same key
stream to the ciphertexts C and C′ respectively. The attacker can now compute
Ci ⊕ C′

i = Pi ⊕ Ki ⊕ P′
i ⊕ Ki = Pi ⊕ P′

i. In other words, the attacker can compute
the difference between the two plaintexts. Suppose the attacker already knows
one of the plaintexts. (This does happen very often in real life.) Then it is trivial
for her to compute the other plaintext. There are even well-known attacks
that recover information about two unknown plaintexts from the difference
between them [66].

OFB has one further problem: if you are unlucky, you will repeat a key block
value, after which the sequence of key blocks simply repeats. In a single large
message, you might be unlucky and get into a cycle of key block values. Or
the IV for one message might be the same as a key block halfway through the
second message, in which case the two messages use the same key stream for
part of their plaintexts. In either case, you end up encrypting different message
blocks with the same key block, which is not a secure encryption scheme.

You need to encrypt quite a lot of data before this becomes plausible. It
is basically a collision attack between the key stream blocks and the initial
starting points, so you are talking about encrypting at least 264 blocks of data
before you expect such a collision. This is an example of why a block cipher
with 128-bit blocks may only provide 64 bits of security. If you limit the
amount of data that you encrypt with each key, you can limit the probability
of repeating a key block value. Unfortunately, the risk always remains, and if
you are unlucky, you could lose the confidentiality of an entire message.

70 Part II ■ Message Security

4.5 CTR

Counter mode, generally known by the three-letter abbreviation CTR, is another
block cipher encryption mode. Although it has been around for ages, it was
not standardized as an official DES mode [95], and therefore has often been
overlooked in textbooks. It has recently been standardized by NIST [40]. Like
OFB, counter mode is a stream cipher mode. It is defined by:

Ki := E(K, Nonce ‖ i) for i = 1, . . . , k
Ci := Pi ⊕ Ki

Like any stream cipher, you must supply a unique nonce of some form. Most
systems build the nonce from a message number and some additional data to
ensure the nonce’s uniqueness.

CTR uses a remarkably simple method to generate the key stream. It
concatenates the nonce with the counter value, and encrypts it to form a single
block of the key stream. This requires that the counter and the nonce fit in
a single block, but with modern 128-bit block sizes, this is rarely a problem.
Obviously, the nonce must be smaller than a single block, as there needs to
be room for the counter value i. A typical setup might use a 48-bit message
number, 16 bits of additional nonce data, and 64 bits for the counter i. This
limits the system to encrypting 248 different messages using a single key, and
limits each message to 268 bytes.

As with OFB mode, you must make absolutely sure never to reuse a single
key/nonce combination. This is a disadvantage that is often mentioned for
CTR, but CBC has exactly the same problem. If you use the same IV twice,
you start leaking data about the plaintexts. CBC is a bit more robust, as it
is more likely to limit the amount of information leaked. But any leakage
of information violates our requirements, and in a modularized design you
cannot count on the rest of the system to limit the damage if you only leak
a little bit of information. So both in the case of CBC and CTR you have to
ensure that the nonce or IV is unique.

The real question is whether you can ensure that the nonce is unique.
If there’s any doubt, you should use a mode like random IV CBC mode,
where the IV is generated randomly and outside of the application developer’s
control. But if you can guarantee that the nonce will be unique, then CTR
mode is very easy to use. You only need to implement the encryption function
of the block cipher, and the CTR encryption and decryption functions are
identical. It is very easy to access arbitrary parts of the plaintext, as any block
of the key stream can be computed immediately. For high-speed applications,
the computation of the key stream can be parallelized to an arbitrary degree.
Furthermore, the security of CTR mode is trivially linked to the security of

Chapter 4 ■ Block Cipher Modes 71

the block cipher. Any weakness of CTR encryption mode immediately implies
a chosen plaintext attack on the block cipher. The logical converse of this is
that if there is no attack on the block cipher, then there is no attack on CTR
mode (other than the traffic analysis and information leakage we will discuss
shortly).

4.6 Combined Encryption and Authentication

All of the modes we have discussed so far date back to the 1970s and early
1980s. In the last few years, some new block cipher modes have been proposed.
NIST recently chose to standardize two, called CCM [41] and GCM [43]. These
modes provide both authentication and encryption. We will discuss these
modes in Chapter 7, after we discuss authentication.

4.7 Which Mode Should I Use?

We have discussed several modes, but there are really only two modes we
would consider using: CBC and CTR. We’ve already explained that ECB is not
secure enough. OFB is a good mode, but CTR is better in some respects and
doesn’t suffer from the short cycle problem. There is no reason to choose OFB
over CTR.

So, should you use CBC or CTR? In the first edition of this book, we
recommended CTR. However, we are always learning more, and we now
recommend CBC with random IV. Why the change? We have seen too many
applications that are insecure because they do not generate the nonce correctly.
CTR is a very good mode, but only if the application can guarantee that the
nonce is unique, even when the system is under attack. That turns out to be
a major source of problems and security weaknesses. CBC with random IV
has some disadvantages (the ciphertext is larger, the plaintext needs padding,
and the system needs a random number generator), but it is robust and stands
up well to abuse. Nonce generation turns out to be a really hard problem in
many systems, so we do not recommend exposing to application developers
any mode that uses nonces. That is even true of CBC with nonce-generated IV.
So if you’re developing an application and need to use an encryption mode,
play it safe and use random IV CBC mode.

Always keep in mind that an encryption mode only provides confidential-
ity. That is, the attacker cannot find any information about the data you are
communicating, other than the fact that you are communicating, when you
are communicating, how much you are communicating, and whom you are

72 Part II ■ Message Security

communicating with. Analyzing these sorts of external information is called
traffic analysis.1

Also recall that the encryption modes in this chapter are only designed to
provide confidentiality against eavesdroppers; they do not stop the attacker
from changing the data. We will come back to protecting both confidentiality
and authenticity in Chapter 7.

4.8 Information Leakage

We now come to the dark secret of block cipher modes. All block cipher modes
leak some information.

For this discussion, we will assume that we have a perfect block cipher. But
even with a perfect block cipher, the ciphertexts that the encryption modes
produce reveal information about the plaintexts. This has to do with equalities
and inequalities of ciphertext and plaintext blocks.

Let’s start with ECB. If two plaintext blocks are equal (Pi = Pj), then the
two ciphertext blocks are equal, too (Ci = Cj). For random plaintexts, this will
happen very rarely, but most plaintext is not random but highly structured.
Thus, equal plaintext blocks occur far more frequently than random, and the
equal ciphertext blocks reveal this structure. That is why we dismissed ECB.

What about CBC mode? Equal plaintext blocks do not lead to equal
ciphertext blocks, as each plaintext block is first xored with the previous
ciphertext block before it is encrypted. Think of all the ciphertext blocks as
random values; after all, they were produced by a block cipher that produces
a random output for any given input. But what if we have two ciphertext
blocks that are equal? We have

Ci = Cj

E(K, Pi ⊕ Ci−1) = E(K, Pj ⊕ Cj−1) from the CBC specifications
Pi ⊕ Ci−1 = Pj ⊕ Cj−1 decrypt both sides

Pi ⊕ Pj = Ci−1 ⊕ Cj−1 basic algebra

The last equation gives the difference between two plaintext blocks as the xor
of two ciphertext blocks, which we assume the attacker knows. This is certainly
not something you would expect from a perfect message encryption system.
And if the plaintext is something with a lot of redundancy, such as plain English
text, it probably contains enough information to recover both plaintext blocks.

A similar situation occurs when two ciphertexts are unequal. Knowing that
Ci
= Cj implies that Pi ⊕ Pj
= Ci−1 ⊕ Cj−1, so each unequal pair of ciphertexts
leads to an inequality formula between the plaintext blocks.

1Traffic analysis can provide very useful information to an attacker. Preventing traffic analysis is
possible, but generally too expensive in terms of bandwidth for anyone but the military.

Chapter 4 ■ Block Cipher Modes 73

CTR has similar properties. With this encryption mode we know that
the Ki blocks are all different, because they are encryptions of a nonce and
counter value. All the plaintext values of the encryption are different, so all
the ciphertext values (which form the key blocks) are different. Given two
ciphertexts Ci and Cj, you know that Pi ⊕ Pj
= Ci ⊕ Cj because otherwise the
two key stream blocks would have had to be equal. In other words, CTR mode
provides a plaintext inequality for each pair of ciphertext blocks.

There are no problems with collisions in CTR. Two key blocks are never
equal, and equal plaintext blocks or equal ciphertext blocks lead to nothing.
The only thing that makes CTR deviate from the absolute ideal stream cipher
is the absence of key block collisions.

OFB is worse than either CBC or CTR. As long as there are no collisions on
the key stream blocks, OFB leaks the same amount of information as CTR. But
if there is ever a collision of two key stream blocks, then all subsequent key
stream blocks also produce a collision. This is a disaster from a security point
of view, and one reason why CTR is preferable to OFB.

4.8.1 Chances of a Collision

So what are the chances that two ciphertext blocks are equal? Let’s say we
encrypt M blocks in total. It doesn’t matter whether this is done in a few large
messages, or in a large number of small messages. All that counts is the total
number of blocks. A good rough estimate is that there are M(M − 1)/2 pairs of
blocks, and each pair has a chance of 2−n of being equal, where n is the block
size of the block cipher. So the expected number of equal ciphertext blocks is
M(M − 1)/2n+1, which gets close to unity when M ≈ 2n/2. In other words, when
you encrypt about 2n/2 blocks, you can expect to get two ciphertext blocks that
are equal.2 With a block size of n = 128 bits, we can expect the first duplicate
ciphertext block value after about 264 blocks. This is the birthday paradox we
explained in Section 2.7.1. Now, 264 blocks is a lot of data, but don’t forget that
we are designing systems with a lifetime of 30 years. Maybe people will want
to process something close to 264 blocks of data in the future.

Smaller data sets are also at risk. If we process 240 blocks (about 16 TB of
data) then there is a 2−48 chance of having a ciphertext block collision. That
is a really small probability. But look at it from the attacker’s point of view.
For a particular key that is being used, he collects 240 blocks and checks for
duplicate blocks. Because the chance of finding one is small, he has to repeat
this whole job for about 248 different keys. The total amount of work before he

2The actual number of blocks you can encrypt before you expect the first duplicate is closer to√
π2n−1 = 2n/2√π/2, but the theory behind the analysis is much harder and we don’t need that

level of precision here.

74 Part II ■ Message Security

finds a collision is 240 · 248 = 288, which is much less than our design strength
of 128 bits.

Let’s concentrate on CBC and CTR. In CTR you get a plaintext inequality
for every pair of blocks. In CBC you get an inequality if the two ciphertext
blocks are unequal, and an equality if the blocks are equal. Obviously an
equality provides much more information about the plaintext to the attacker
than an inequality does, so CTR leaks less information.

4.8.2 How to Deal With Leakage

So how do we achieve our goal of a 128-bit security level? Basically, we don’t,
but we get as close as we can. There is no easy way of achieving a 128-bit
security level with a block cipher whose block size is 128 bits. This is why we
want to have block ciphers with 256-bit blocks, but there are no widely studied
proposals of such a block cipher out there, so that is a dead end. What we can
do is get close to our design security level, and limit the damage.

CTR leaks very little data. Suppose we encrypt 264 blocks of data and
produce a ciphertext C. For any possible plaintext P that is 264 blocks long, the
attacker can compute the key stream that would have to be used for this P to
be encrypted to C. There is roughly a 50% chance that the resulting key stream
will contain a collision. We know that CTR mode never produces collisions,
so if a collision occurs, that particular plaintext P can be ruled out. This means
that the attacker can rule out approximately half of all possible plaintexts.
This corresponds to leaking a single bit of information to the attacker. Even
revealing a single bit of information can sometimes be problematic. But leaking
a single bit of information for 264 blocks is not much. If we restrict ourselves to
encrypting only 248 blocks, then the attacker can rule out approximately 2−32 of
all plaintexts, which is even less information. In a practical setting, such a small
leakage is insignificant when taken in the context of the attack requirements.
So although CTR encryption is not perfect, we can limit the damage to an
extremely small leak by not encrypting too much information with a single
key. It would be reasonable to limit the cipher mode to 260 blocks, which allows
you to encrypt 264 bytes but restricts the leakage to a small fraction of a bit.

When using CBC mode you should be a bit more restrictive. If a collision
occurs in CBC mode, you leak 128 bits of information about the plaintext. It
is a good policy to keep the probability of such a collision low. We suggest
limiting CBC encryption to 232 blocks or so. That leaves a residual risk of 2−64

that you will leak 128 bits, which is probably harmless for most applications,
but certainly far from our desired security level.

Just a reminder; these limits are on the total amount of information encrypted
using a single key. It does not matter whether the data is encrypted in one
very large message, or as a large number of smaller messages.

Chapter 4 ■ Block Cipher Modes 75

This is not a satisfactory state of affairs, but it is the situation we face.
The best you can do at this point is use CTR or CBC and limit the amount of
data you process with any one key. We will talk later about key negotiation
protocols. It is quite easy to set up a fresh key when the old key is nearing its
usage limit. Assuming you already use a key negotiation protocol to set up
the encryption key, having to refresh a key is not particularly difficult. It is a
complication, but a justifiable one.

4.8.3 About Our Math
Readers with a mathematical background may be horrified at our blithe use
of probabilities without checking whether the probabilities are independent.
They are right, of course, when arguing from a purely mathematical standpoint.
But just like physicists, cryptographers use math in a way that they have
found useful. Cryptographic values typically behave very randomly. After all,
cryptographers go to great length to absolutely destroy all patterns, as any
pattern leads to an attack. Experience shows that this style of dealing with
probabilities leads to quite accurate results. Mathematicians are welcome to
work through the details and figure out the exact results for themselves, but
we prefer the rougher approximations for their simplicity.

4.9 Exercises

Exercise 4.1 Let P be a plaintext and let �(P) be the length of P in bytes. Let b
be the block size of the block cipher in bytes. Explain why the following is not
a good padding scheme: Determine the minimum number of padding bytes
necessary in order to pad the plaintext to a block boundary. This is a number n
which satisfies 0 ≤ n ≤ b − 1 and n + �(P) is a multiple of b. Pad the plaintext
by appending n bytes, each with value n.

Exercise 4.2 Compare the security and performance advantages and disad-
vantages of each variant of CBC mode covered in this chapter: a fixed IV, a
counter IV, a random IV, and a nonce-generated IV.

Exercise 4.3 Suppose you, as an attacker, observe the following 32-byte
ciphertext C (in hex)

46 64 DC 06 97 BB FE 69 33 07 15 07 9B A6 C2 3D

2B 84 DE 4F 90 8D 7D 34 AA CE 96 8B 64 F3 DF 75

and the following 32-byte ciphertext C′ (also in hex)

51 7E CC 05 C3 BD EA 3B 33 57 0E 1B D8 97 D5 30

7B D0 91 6B 8D 82 6B 35 B7 8B BB 8D 74 E2 C7 3B.

76 Part II ■ Message Security

Suppose you know these ciphertexts were generated using CTR mode with
the same nonce. The nonce is implicit, so it is not included in the ciphertext.
You also know that the plaintext P corresponding to C is

43 72 79 70 74 6F 67 72 61 70 68 79 20 43 72 79

70 74 6F 67 72 61 70 68 79 20 43 72 79 70 74 6F.

What information, if any, can you infer about the plaintext P′ corresponding
to C′?

Exercise 4.4 The ciphertext (in hex)

87 F3 48 FF 79 B8 11 AF 38 57 D6 71 8E 5F 0F 91

7C 3D 26 F7 73 77 63 5A 5E 43 E9 B5 CC 5D 05 92

6E 26 FF C5 22 0D C7 D4 05 F1 70 86 70 E6 E0 17

was generated with the 256-bit AES key (also in hex)

80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

using CBC mode with a random IV. The IV is included at the beginning of
the ciphertext. Decrypt this ciphertext. You may use an existing cryptography
library for this exercise.

Exercise 4.5 Encrypt the plaintext

62 6C 6F 63 6B 20 63 69 70 68 65 72 73 20 20 20

68 61 73 68 20 66 75 6E 63 74 69 6F 6E 73 20 78

62 6C 6F 63 6B 20 63 69 70 68 65 72 73 20 20 20

using AES in ECB mode and the key

80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01.

You may use an existing cryptography library for this exercise.

Exercise 4.6 Let P1, P2 be a message that is two blocks long, and let P′
1 be

a message that is one block long. Let C0, C1, C2 be the encryption of P1, P2

using CBC mode with a random IV and a random key, and let C′
0, C′

1 be the
encryption of P′

1 using CBC mode with a random IV and the same key. Suppose
an attacker knows P1, P2 and suppose the attacker intercepted and thus know
C0, C1, C2 and C′

0, C′
1. Further suppose that, by random chance, C′

1 = C2. Show
that the attacker can compute P′

1.

C H A P T E R

5

Hash Functions

A hash function is a function that takes as input an arbitrarily long string of bits
(or bytes) and produces a fixed-size result. A typical use of a hash function
is digital signatures. Given a message m, you could sign the message itself.
However, the public-key operations of most digital signature schemes are
fairly expensive in computational terms. So instead of signing m itself, you
apply a hash function h and sign h(m) instead. The result of h is typically
between 128 and 1024 bits, compared to multiple thousands or millions of bits
for the message m itself. Signing h(m) is therefore much faster than signing m
directly. For this construction to be secure, it must be infeasible to construct
two messages m1 and m2 that hash to the same value. We’ll discuss the details
of the security properties of hash functions below.

Hash functions are sometimes called message digest functions, and the hash
result is also known as the digest, or the fingerprint. We prefer the more common
name hash function, as hash functions have many other uses besides digesting
messages. We must warn you about one possible confusion: the term ‘‘hash
function’’ is also used for the mapping function used in accessing hash tables,
a data structure used in many algorithms. These so-called hash functions
have similar properties to cryptographic hash functions, but there is a huge
difference between the two. The hash functions we use in cryptography have
specific security properties. The hash-table mapping-function has far weaker
requirements. Be careful not to confuse the two. When we talk about hash
functions in this book, we always mean cryptographic hash functions.

Hash functions have many applications in cryptography. They make a great
glue between different parts of a cryptographic system. Many times when

77

78 Part II ■ Message Security

you have a variable-sized value, you can use a hash function to map it to a
fixed-size value. Hash functions can be used in cryptographic pseudorandom
number generators to generate several keys from a single shared secret. And
they have a one-way property that isolates different parts of a system, ensuring
that even if an attacker learns one value, she doesn’t learn the others.

Even though hash functions are used in almost every system, we as a
community currently know less about hash functions than we do about block
ciphers. Until recently, much less research had been done on hash functions
than block ciphers, and there were not very many practical proposals to choose
from. This situation is changing. NIST is now in the process of selecting a new
hash function standard, to be called SHA-3. The SHA-3 hash function selection
process is proving to be very similar to the process that selected the AES as
the new block cipher standard.

5.1 Security of Hash Functions

As we mentioned above, a hash function maps an input m to a fixed-size
output h(m). Typical output sizes are 128–1024 bits. There might be a limit
on the input length, but for all practical purposes the input can be arbitrarily
long. There are several requirements for a hash function. The simplest one is
that it must be a one-way function: given a message m it is easy to compute
h(m), but given a value x it is not possible to find an m such that h(m) = x. In
other words, a one-way function is a function that can be computed but that
cannot be inverted—hence its name.

Of the many properties that a good hash function should have, the one that
is mentioned most often is collision resistance. A collision is two different inputs
m1 and m2 for which h(m1) = h(m2). Of course, every hash function has an
infinite number of these collisions. (There are an infinite number of possible
input values, and only a finite number of possible output values.) Thus, a hash
function is never collision-free. The collision-resistance requirement merely
states that, although collisions exist, they cannot be found.

Collision resistance is the property that makes hash functions suitable for
use in signature schemes. However, there are collision-resistant hash functions
that are utterly unsuitable for many other applications, such as key derivation,
one-way functions, etc. In practice, cryptographic designers expect a hash
function to be a random mapping. Therefore, we require that a hash function
be indistinguishable from a random mapping. Any other definition leads to
a situation in which the designer can no longer treat the hash function as
an idealized black box, but instead has to consider how the hash function
properties interact with the system around it. (We number our definitions
globally throughout this book.)

Chapter 5 ■ Hash Functions 79

Definition 4 The ideal hash function behaves like a random mapping from all
possible input values to the set of all possible output values.

Like our definition of the ideal block cipher (Section 3.3), this is an incomplete
definition. Strictly speaking, there is no such thing as a random mapping; you
can only talk about a probability distribution over all possible mappings.
However, for our purposes this definition is good enough.

We can now define what an attack on a hash function is.

Definition 5 An attack on a hash function is a non-generic method of distinguishing
the hash function from an ideal hash function.

Here the ideal hash function must obviously have the same output size as the
hash function we are attacking. As with the block ciphers, the ‘‘non-generic’’
requirement takes care of all the generic attacks. Our remarks about generic
attacks on block ciphers carry over to this situation. For example, if an attack
could be used to distinguish between two ideal hash functions, then it doesn’t
exploit any property of the hash function itself and it is a generic attack.

The one remaining question is how much work the distinguisher is allowed
to perform. Unlike the block cipher, the hash function has no key, and there is
no generic attack like the exhaustive key search. The one interesting parameter
is the size of the output. One generic attack on a hash function is the birthday
attack, which generates collisions. For a hash function with an n-bit output,
this requires about 2n/2 steps. But collisions are only relevant for certain uses
of hash functions. In other situations, the goal is to find a pre-image (given
x, find an m with h(m) = x), or to find some kind of structure in the hash
outputs. The generic pre-image attack requires about 2n steps. We’re not going
to discuss at length here which attacks are relevant and how much work would
be reasonable for the distinguisher to use for a particular style of attack. To be
sensible, a distinguisher has to be more efficient than a generic attack that yields
similar results. We know this is not an exact definition, but—as with block
ciphers—we don’t have an exact definition. If somebody claims an attack,
simply ask yourself if you could get a similar or better result from a generic
attack that does not rely on the specifics of the hash function. If the answer is
yes, the distinguisher is useless. If the answer is no, the distinguisher is real.

As with block ciphers, we allow a reduced security level if it is specified. We
can imagine a 512-bit hash function that specifies a security level of 128 bits.
In that case, distinguishers are limited to 2128 steps.

5.2 Real Hash Functions

There are very few good hash functions out there. At this moment, you are
pretty much stuck with the existing SHA family: SHA-1, SHA-224, SHA-
256, SHA-384, and SHA-512. There are other published proposals, including

80 Part II ■ Message Security

submissions for the new SHA-3 standard, but these all need to receive more
attention before we can fully trust them. Even the existing functions in the
SHA family have not been analyzed nearly enough, but at least they have been
standardized by NIST, and they were developed by the NSA.1

Almost all real-life hash functions, and all the ones we will discuss, are
iterative hash functions. Iterative hash functions split the input into a sequence
of fixed-size blocks m1, . . . , mk, using a padding rule to fill out the last block. A
typical block length is 512 bits, and the last block will typically contain a string
representing the length of the input. The message blocks are then processed in
order, using a compression function and a fixed-size intermediate state. This
process starts with a fixed value H0, and defines Hi = h′(Hi−1, mi). The final
value Hk is the result of the hash function.

Such an iterative design has significant practical advantages. First of all,
it is easy to specify and implement, compared to a function that handles
variable-length inputs directly. Furthermore, this structure allows you to start
computing the hash of a message as soon as you have the first part of it. So
in applications where a stream of data is to be hashed, the message can be
hashed on the fly without ever storing the data.

As with block ciphers, we will not spend our time explaining the various
hash functions in great detail. The full specifications contain many details that
are not relevant to the main goals of this book.

5.2.1 A Simple But Insecure Hash Function
Before discussing real hash functions, however, we will begin by giving an
example of a trivially insecure iterative hash function. This example will help
clarify the definition of a generic attack. This hash function is built from AES
with a 256-bit key. Let K be a 256-bit key set to all zeros. To hash the message
m, first pad it in some way and break it into 128-bit blocks m1, . . . , mk; the
details of the padding scheme aren’t important here. Set H0 to a 128-bit block
of all zeros. And now compute Hi = AESK(Hi−1 ⊕ mi). Let Hk be the result of
the hash function.

Is this a secure hash function? Is it collision resistant? Before reading further,
try to see if you can find a way of breaking this hash function yourself.

Now here’s a non-generic attack. Pick a message m such that after padding
it splits into two blocks m1 and m2. Let H1 and H2 denote the values computed
as part of the hash function’s internal processing; H2 is also the output of the
hash function. Now let m′

1 = m2 ⊕ H1 and let m′
2 = H2 ⊕ m2 ⊕ H1, and let m′

be the message that splits into m′
1 and m′

2 after padding. Due to properties
of the hash function’s construction, m′ also hashes to H2; you can verify this
in the exercises at the end of this chapter. And with very high probability, m
and m′ are different strings. That’s right—m and m′ are two distinct messages

1Whatever you may think about the NSA, so far the cryptography it has published has been
quite decent.

Chapter 5 ■ Hash Functions 81

that produce a collision when hashed with this hash function. To convert this
into a distinguishing attack, simply try to mount this attack against the hash
function. If the attack works, the hash function is the weak one we described
here; otherwise, the hash function is the ideal one. This attack exploits a specific
weakness in how this hash function was designed, and hence this attack is
non-generic.

5.2.2 MD5
Let’s now turn to some real hash function proposals, beginning with MD5.
MD5 is a 128-bit hash function developed by Ron Rivest [104]. It is a further
development of a hash function called MD4 [106] with additional strengthening
against attacks. Its predecessor MD4 is very fast, but also broken [36]. MD5
has now been broken too. You will still hear people talk about MD5, however,
and it is still in use in some real systems.

The first step in computing MD5 is to split the message into blocks of 512
bits. The last block is padded and the length of the message is included as
well. MD5 has a 128-bit state that is split into four words of 32 bits each. The
compression function h′ has four rounds, and in each round the message block
and the state are mixed. The mixing consists of a combination of addition, xor,
and, or, and rotation operations on 32-bit words. (For details, see [104].) Each
round mixes the entire message block into the state, so each message word is
in fact used four times. After the four rounds of the h′ function, the input state
and result are added together to produce the output of h′.

This structure of operating on 32-bit words is very efficient on 32-bit CPUs.
It was pioneered by MD4, and is now a general feature of many cryptographic
primitives.

For most applications, the 128-bit hash size of MD5 is insufficient. Using the
birthday paradox, we can trivially find collisions on any 128-bit hash function
using 264 evaluations of the hash function. This would allow us to find real
collisions against MD5 using only 264 MD5 computations. This is insufficient
for modern systems.

But the situation with MD5 is worse than that. MD5’s internal structure
makes it vulnerable to more efficient attacks. One of the basic ideas behind
the iterative hash function design is that if h′ is collision-resistant, then the
hash function h built from h′ is also collision-resistant. After all, any collision
in h can only occur due to a collision in h′. For over a decade now it has been
known that the MD5 compression function h′ has collisions [30]. The collisions
for h′ don’t immediately imply a collision for MD5. But recent cryptanalytic
advances, beginning with Wang and Yu [124], have now shown that it is
actually possible to find collisions for the full MD5 using much fewer than
264 MD5 computations. While the existence of such efficient collision finding
attacks may not immediately break all uses of MD5, it is safe to say that MD5
is very weak and should no longer be used.

82 Part II ■ Message Security

5.2.3 SHA-1
The Secure Hash Algorithm was designed by the NSA and standardized by
NIST [97]. The first version was just called SHA (now often called SHA-0). The
NSA found a weakness with SHA-0, and developed a fix that NIST published
as an improved version, called SHA-1. However, they did not release any
details about the weakness. Three years later, Chabaud and Joux published
a weakness of SHA-0 [25]. This is a weakness that is fixed by the improved
SHA-1, so it is reasonable to assume that we now know what the problem was.

SHA-1 is a 160-bit hash function based on MD4. Because of its shared
parentage, it has a number of features in common with MD5, but it is a far
more conservative design. It is also slower than MD5. Unfortunately, despite
its more conservative design, we now know that SHA-1 is also insecure.

SHA-1 has a 160-bit state consisting of five 32-bit words. Like MD5, it has
four rounds that consist of a mixture of elementary 32-bit operations. Instead
of processing each message block four times, SHA-1 uses a linear recurrence
to ‘‘stretch’’ the 16 words of a message block to the 80 words it needs. This
is a generalization of the MD4 technique. In MD5, each bit of the message
is used four times in the mixing function. In SHA-1, the linear recurrence
ensures that each message bit affects the mixing function at least a dozen
times. Interestingly enough, the only change from SHA-0 to SHA-1 was the
addition of a one-bit rotation to this linear recurrence.

Independent of any internal weaknesses, the main problem with SHA-1
is the 160-bit result size. Collisions against any 160-bit hash function can be
generated in only 280 steps, well below the security level of modern block
ciphers with key sizes from 128 to 256 bits. It is also insufficient for our design
security level of 128 bits. Although it took longer for SHA-1 to fall than MD5,
we now know that it is possible to find collisions in SHA-1 using much less
work than 280 SHA-1 computations [123]. Remember that attacks always get
better? It is no longer safe to trust SHA-1.

5.2.4 SHA-224, SHA-256, SHA-384, and SHA-512
In 2001, NIST published a draft standard containing three new hash functions,
and in 2004 they updated this specification to include a fourth hash function
[101]. These hash functions are collectively referred to as the SHA-2 family of
hash functions. These have 224-, 256-, 384-, and 512-bit outputs, respectively.
They are designed to be used with the 128-, 192-, and 256-bit key sizes of AES,
as well as the 112-bit key size of 3DES. Their structure is very similar to SHA-1.

These hash functions are new, which is generally a red flag. However, the
known weaknesses of SHA-1 are much more severe. Further, if you want more
security than SHA-1 can give you, you need a hash function with a larger
result. None of the published designs for larger hash functions have received

Chapter 5 ■ Hash Functions 83

much public analysis; at least the SHA-2 family has been vetted by the NSA,
which generally seems to know what it is doing.

SHA-256 is much slower than SHA-1. For long messages, computing a hash
with SHA-256 takes about as much time as encrypting the message with AES
or Twofish, or maybe a little bit more. This is not necessarily bad, and is an
artifact of its conservative design.

5.3 Weaknesses of Hash Functions

Unfortunately, all of these hash functions have some properties that disqualify
them according to our security definition.

5.3.1 Length Extensions
Our greatest concern about all these hash functions is that they have a length-
extension bug that leads to real problems and that could easily have been
avoided. Here is the problem. A message m is split into blocks m1, . . . , mk and
hashed to a value H. Let’s now choose a message m′ that splits into the block
m1, . . . , mk, mk+1. Because the first k blocks of m′ are identical to the k blocks
of message m, the hash value h(m) is merely the intermediate hash value
after k blocks in the computation of h(m′). We get h(m′) = h′(h(m), mk+1). When
using MD5 or any hash function from the SHA family, you have to choose m′

carefully to include the padding and length field, but this is not a problem as
the method of constructing these fields is known.

The length extension problem exists because there is no special processing
at the end of the hash function computation. The result is that h(m) provides
direct information about the intermediate state after the first k blocks of m′.

This is certainly a surprising property for a function we want to think
of as a random mapping. In fact, this property immediately disqualifies all
of the mentioned hash functions, according to our security definition. All a
distinguisher has to do is to construct a few suitable pairs (m, m′) and check
for this relationship. You certainly wouldn’t find this relationship in an ideal
hash function. This is a non-generic attack that exploits properties of the hash
functions themselves, so this is a valid attack. The attack itself takes only a few
hash computations, so it is very quick.

How could this property be harmful? Imagine a system where Alice sends
a message to Bob and wants to authenticate it by sending h(X ‖ m), where X
is a secret known only to Bob and Alice, and m is the message. If h were an
ideal hash function, this would make a decent authentication system. But with
length extensions, Eve can now append text to the message m, and update the
authentication code to match the new message. An authentication system that
allows Eve to modify the message is, of course, of no use to us.

84 Part II ■ Message Security

This issue will be resolved in SHA-3; one of the NIST requirements is that
SHA-3 not have length-extension properties.

5.3.2 Partial-Message Collision
A second problem is inherent in the iterative structure of most hash functions.
We’ll explain the problem with a specific distinguisher.

The first step of any distinguisher is to specify the setting in which it will
differentiate between the hash function and the ideal hash function. Sometimes
this setting can be very simple: given the hash function, find a collision. Here
we use a slightly more complicated setting. Suppose we have a system that
authenticates a message m with h(m ‖ X), where X is the authentication key.
The attacker can choose the message m, but the system will only authenticate
a single message.2

For a perfect hash function of size n, we expect that this construction has
a security level of n bits. The attacker cannot do any better than to choose
an m, get the system to authenticate it as h(m ‖ X), and then search for X
by exhaustive search. The attacker can do much better with an iterative hash
function. She finds two strings m and m′ that lead to a collision when hashed by
h. This can be done using the birthday attack in only 2n/2 steps or so. She then
gets the system to authenticate m, and replaces the message with m′. Remember
that h is computed iteratively, so once there is a collision and the rest of the
hash inputs are the same, the hash value stays the same, too. Because hashing
m and m′ leads to the same value, h(m ‖ X) = h(m′ ‖ X). Notice that this attack
does not depend on X—the same m and m′ would work for all values for X.

This is a typical example of a distinguisher. The distinguisher sets its own
‘‘game’’ (a setting in which it attempts an attack), and then attacks the system.
The object is still to distinguish between the hash function and the ideal hash
function, but that is easy to do here. If the attack succeeds, it is an iterative
hash function; if the attack fails, it is the ideal hash function.

5.4 Fixing the Weaknesses

We want a hash function that we can treat as a random mapping, but all
well-known hash functions fail this property. Will we have to check for length-
extension problems in every place we use a hash function? Do we check for
partial-message collisions everywhere? Are there any other weaknesses we
need to check for?

2Most systems will only allow a limited number of messages to be authenticated; this is just an
extreme case. In real life, many systems include a message number with each message, which
has the same effect on this attack as allowing only a single message to be chosen.

Chapter 5 ■ Hash Functions 85

Leaving weaknesses in the hash function is a very bad idea. We can guarantee
that it will be used somewhere in a way that exposes the weakness. Even if you
document the known weaknesses, they will not be checked for in real systems.
Even if you could control the design process that well, you would run into
a complexity problem. Suppose the hash function has three weaknesses, the
block cipher two, the signature scheme four, etc. Before you know it, you will
have to check hundreds of interactions among these weaknesses: a practical
impossibility. We have to fix the hash function.

The new SHA-3 standard will address these weaknesses. In the meantime,
we need short-term fixes.

5.4.1 Toward a Short-term Fix
Here is one potential solution. Ultimately, we’ll recommend the fixes in
the subsequent subsections, and this particular proposal has not received
significant review within the community. But this discussion is illustrative, so
we include it here.

Let h be one of the hash functions mentioned above. Instead of m �→ h(m), one
could use m �→ h(h(m) ‖ m) as a hash function.3 Effectively we put h(m) before
the message we are hashing. This ensures that the iterative hash computations
immediately depend on all the bits of the message, and no partial-message or
length-extension attacks can work.

Definition 6 Let h be an iterative hash function. The hash function hdbl is defined
by hdbl(m) := h(h(m) ‖ m).

We believe that if h is any of the newer SHA-2 family hash functions, this
construction has a security level of n bits, where n is the size of the hash result.

A disadvantage of this approach is that it is slow. You have to hash the
entire message twice, which takes twice as long. Another disadvantage is that
this approach requires the whole message m to be buffered. You can no longer
compute the hash of a stream of data as it passes by. Some applications depend
on this ability, and using hdbl would simply not work.

5.4.2 A More Efficient Short-term Fix
So how do we keep the full speed of the original hash function? We cheat,
kind of. Instead of h(m), we can use h(h(0b ‖ m)) as a hash function, and claim
a security level of only n/2 bits. Here b is the block length of the underlying
compression function, so 0b ‖ m equates to prepending the message with an
all zero block before hashing. The cheat is that we normally expect an n-bit

3The notation x �→ f (x) is a way of writing down a function without having to give it a name. For
example: x �→ x2 is a function that squares its input.

86 Part II ■ Message Security

hash function to provide a security level of n bits for those situations in which
a collision attack is not possible.4 The partial-message collision attacks all rely
on birthday attacks, so if we reduce the security level to n/2 bits, these attacks
no longer fall within the claimed security level.

In most situations, reducing the security level in this way would be unac-
ceptable, but we are lucky here. Hash functions are already designed to be
used in situations where collision attacks are possible, so the hash function
sizes are suitably large. If we apply this construction to SHA-256, we get a
hash function with a 128-bit security level, which is exactly what we need.

Some might argue that all n-bit hash functions provide only n/2 bits of
security. That is a valid point of view. Unfortunately, unless you are very
specific about these things, people will abuse the hash function and assume
it provides n bits of security. For example, people want to use SHA-256 to
generate a 256-bit key for AES, assuming that it will provide a security level
of 256 bits. As we explained earlier, we use 256-bit keys to achieve a 128-bit
security level, so this matches perfectly with the reduced security level of
our fixed version of SHA-256. This is not accidental. In both cases the gap
between the size of the cryptographic value and the claimed security level is
due to collision attacks. As we assume collision attacks are always possible,
the different sizes and security levels will fit together nicely.

Here is a more formal definition of this fix.

Definition 7 Let h be an iterative hash function, and let b denote the block
length of the underlying compression function. The hash function hd is defined by
hd(m) := h(h(0b ‖ m)), and has a claimed security level of min(k, n/2) where k is the
security level of h and n is the size of the hash result.

We will use this construction mostly in combination with hash functions
from the SHA family. For any hash function SHA-X, where X is 1, 224, 256, 384,
or 512, we define SHAd-X as the function that maps m to SHA-X(SHA-X(0b ‖
m)). SHAd-256 is just the function m �→ SHA-256(SHA-256(0512 ‖ m)), for
example.

This particular fix to the SHA family of iterative hash functions, in addition to
being related to our construction in Section 5.4.1, was also described by Coron
et al. [26]. It can be demonstrated that the fixed hash function hd is at least as
strong as the underlying hash function h.5 HMAC uses a similar hash-it-again
approach to protect against length-extension attacks. Prepending the message
with a block of zeros makes it so that, unless something unusual happens, the

4Even the SHA-256 documentation claims that an n-bit hash function should require 2n steps to
find a pre-image of a given value.
5We’re cheating a little bit here. By hashing twice, the range of the function is reduced, and
birthday attacks are a little bit easier. This is a small effect, and it falls well within the margin of
approximation we’ve used elsewhere.

Chapter 5 ■ Hash Functions 87

first block input to the inner hash function in hd is different than the input to
the outer hash function. Both hdbl and hd eliminate the length extension bug
that poses the most danger to real systems. Whether hdbl in fact has a security
level of n bits remains to be seen. We would trust both of them up to n/2 bits
of security, so in practice we would use the more efficient hd construction.

5.4.3 Another Fix
There is another fix to some of these weaknesses with the SHA-2 family of
iterative hash functions: Truncate the output [26]. If a hash function produces
n-bit outputs, only use the first n − s of those bits as the hash value for some
positive s. In fact, SHA-224 and SHA-384 both already do this; SHA-224 is
roughly SHA-256 with 32 output bits dropped, and SHA-384 is roughly SHA-
512 with 128 output bits dropped. For 128 bits of security, you could hash
with SHA-512, drop 256 bits of the output, and return the remaining 256 bits
as the result of the truncated hash function. The result would be a 256-bit hash
function which, because of birthday attacks, would meet our 128-bit security
design goal.

5.5 Which Hash Function Should I Choose?

Many of the submissions to NIST’s SHA-3 competition have revolutionary
new designs, and they address the weaknesses we’ve discussed here and
other concerns. However, the competition is still going on and NIST has not
selected a final SHA-3 algorithm. Much additional analysis is necessary in
order to have sufficient confidence in the SHA-3 submissions. In the short
term, we recommend using one of the newer SHA hash function family
members—SHA-224, SHA-256, SHA-384, or SHA-512. Moreover, we suggest
you choose a hash function from the SHAd family, or use SHA-512 and truncate
the output to 256 bits. In the long term, we will very likely recommend the
winner of the SHA-3 competition.

5.6 Exercises

Exercise 5.1 Use a software tool to generate two messages M and M′, M
= M′,
that produce a collision for MD5. To generate this collision, use one of the
known attacks against MD5. A link to example code for finding MD5 collisions
is available at: http://www.schneier.com/ce.html.

Exercise 5.2 Using an existing cryptography library, write a program to
compute the SHA-512 hash value of the following message in hex:

48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 2E 20 20 20.

../../../../../www.schneier.com/ce.html

88 Part II ■ Message Security

Exercise 5.3 Consider SHA-512-n, a hash function that first runs SHA-512
and then outputs only the first n bits of the result. Write a program that
uses a birthday attack to find and output a collision on SHA-512-n, where
n is a multiple of 8 between 8 and 48. Your program may use an existing
cryptography library. Time how long your program takes when n is 8, 16, 24,
32, 40, and 48, averaged over five runs for each n. How long would you expect
your program to take for SHA-512-256? For SHA-512-384? For SHA-512 itself?

Exercise 5.4 Let SHA-512-n be as in the previous exercise. Write a program
that finds a message M (a pre-image) that hashes to the following value under
SHA-512-8 (in hex):

A9.

Write a program that finds a message M that hashes to the following value
under SHA-512-16 (in hex):

3D 4B.

Write a program that finds a message M that hashes to the following value
under SHA-512-24 (in hex):

3A 7F 27.

Write a program that finds a message M that hashes to the following value
under SHA-512-32 (in hex):

C3 C0 35 7C.

Time how long your programs take when n is 8, 16, 24, and 32, averaged
over five runs each. Your programs may use an existing cryptography library.
How long would you expect a similar program to take for SHA-512-256? For
SHA-512-384? For SHA-512 itself?

Exercise 5.5 In Section 5.2.1, we claimed that m and m′ both hash to H2. Show
why this claim is true.

Exercise 5.6 Pick two of the SHA-3 candidate hash function submissions
and compare their performance and their security under the currently best
published attacks. Information about the SHA-3 candidates is available at
http://www.schneier.com/ce.html.

../../../../../www.schneier.com/ce.html

C H A P T E R

6

Message Authentication Codes

A message authentication code, or MAC, is a construction that detects tampering
with messages. Encryption prevents Eve from reading the messages but does
not prevent her from manipulating the messages. This is where the MAC
comes in. Like encryption, MACs use a secret key, K, known to both Alice
and Bob but not to Eve. Alice sends not just the message m, but also a MAC
value computed by a MAC function. Bob checks that the MAC value of the
message received equals the MAC value received. If they do not match, he
discards the message as unauthenticated. Eve cannot manipulate the message
because without K she cannot find the correct MAC value to send with the
manipulated message.

In this chapter we will only consider authentication. The mechanisms for
combining encryption and authentication will be dealt with in Chapter 7.

6.1 What a MAC Does

A MAC is a function that takes two arguments, a fixed-size key K and an
arbitrarily sized message m, and produces a fixed-size MAC value. We’ll write
the MAC function as mac(K, m). To authenticate a message, Alice sends not
only the message m but also the MAC code mac(K, m), also called the tag.
Suppose Bob, also with key K, receives a message m′ and a tag T. Bob uses the
MAC verification algorithm to verify that T is a valid MAC under key K for
message m′.

89

90 Part II ■ Message Security

We start with a look at the MAC function in isolation. Be warned that using
a MAC function properly is more complicated than just applying it to the
message. We’ll get to those problems later on, in Section 6.7.

6.2 The Ideal MAC and MAC Security

There are various ways to define the security of a MAC. We describe here our
preferred definition. This definition is based on the notion of an ideal MAC
function, which is very similar to the notion of an ideal block cipher. The
primary difference is that block ciphers are permutations, whereas MACs are
not. This is our preferred definition because it encompasses a broad range of
attacks, including weak key attacks, related-key attacks, and more.

The ideal MAC is a random mapping. Let n be the number of bits in the
result of a MAC. Our definition of an ideal MAC is:

Definition 8 An ideal MAC function is a random mapping from all possible inputs
to n-bit outputs.

Remember that, in this definition, the MAC takes two inputs, a key and a
message. In practice, the key K is not known to the attacker or, more precisely,
it is not fully known. There could be a weakness in the rest of the system that
provides partial information about K to the attacker.

We define the security of a MAC as follows.

Definition 9 An attack on a MAC is a non-generic method of distinguishing the
MAC from an ideal MAC function.

Cryptography is a broad field. There are more formal definitions that
theoreticians use. When possible, we prefer the definition above because it is
broader and more aligned with the full range of attacks one might consider. Our
attack model includes some forms of attacks not captured by the conventional,
formal definitions, such as related-key attacks and attacks that assume that the
attacker has partial knowledge about the key. That is why we prefer our style
of security definitions, which are robust even if the function is abused or used
in an unusual environment.

The more restrictive standard definition is one in which an attacker selects
n different messages of her choosing, and is given the MAC value for each of
these messages. The attacker then has to come up with n + 1 messages, each
with a valid MAC value.

Chapter 6 ■ Message Authentication Codes 91

6.3 CBC-MAC and CMAC

CBC-MAC is a classic method of turning a block cipher into a MAC. The key
K is used as the block cipher key. The idea behind CBC-MAC is to encrypt
the message m using CBC mode and then throw away all but the last block of
ciphertext. For a message P1, . . . , Pk, the MAC is computed as:

H0 := IV
Hi := EK(Pi ⊕ Hi−1)

MAC := Hk

Sometimes the output of the CBC-MAC function is taken to be only part (e.g.,
half) of the last block. The most common definition of CBC-MAC requires the
IV to be fixed at 0.

In general, one should never use the same key for both encryption and
authentication. It is especially dangerous to use CBC encryption and CBC-
MAC authentication with the same key. The MAC ends up being equal to
the last ciphertext block. What’s more, depending on when and how CBC
encryption and CBC-MAC are applied, using the same key for both can lead to
privacy compromises for CBC encryption and authenticity compromises for
CBC-MAC.

Using CBC-MAC is a bit tricky, but it is generally considered secure when
used correctly and when the underlying cipher is secure. Studying the strengths
and weaknesses of CBC-MAC can be very educational. There are a number
of different collision attacks on CBC-MAC that effectively limit the security to
half the length of the block size [20]. Here is a simple collision attack: let M be
a CBC-MAC function. If we know that M(a) = M(b) then we also know that
M(a ‖ c) = M(b ‖ c). This is due to the structure of CBC-MAC. Let’s illustrate
this with a simple case: c consists of a single block. We have

M(a ‖ c) = EK(c ⊕ M(a))
M(b ‖ c) = EK(c ⊕ M(b))

and these two must be equal, because M(a) = M(b).
The attack proceeds in two stages. In the first stage, the attacker collects

the MAC values of a large number of messages until a collision occurs. This
takes 264 steps for a 128-bit block cipher because of the birthday paradox.
This provides the a and b for which M(a) = M(b). If the attacker can now get
the sender to authenticate a ‖ c, he can replace the message with b ‖ c without
changing the MAC value. The receiver will check the MAC and accept the
bogus message b ‖ c. (Remember, we work in the paranoia model. It is quite

92 Part II ■ Message Security

acceptable for the attacker to create a message and get it authenticated by the
sender. There are many situations in which this is possible.) There are many
extensions to this attack that work even with the addition of length fields and
padding rules [20].

This is not a generic attack, as it does not work on an ideal MAC function.
Finding the collision is not the problem. That can be done for an ideal MAC
function in exactly the same way. But once you have two messages a and b, for
which M(a) = M(b), you cannot use them to forge a MAC on a new message,
whereas you can do that with CBC-MAC.

As another example attack, suppose c is one block long and M(a ‖ c) =
M(b ‖ c). Then M(a ‖ d) = M(b ‖ d) for any block d. The actual attack is similar
to the one above. First the attacker collects the MAC values of a large number
of messages that end in c until a collision occurs. This provides the values of
a and b. The attacker then gets the sender to authenticate a ‖ d. Now he can
replace the message with b ‖ d without changing the MAC value.

There are some nice theoretical results which argue that, in the particular
proof model used, CBC-MAC provides 64 bits of security when the block size
is 128 bits [6] and when the MAC is only ever applied to messages that are
the same length. Unfortunately, this is short of our desired design strength,
though in practice it’s not immediately clear how to achieve our desired design
strength with 128-bit block ciphers. CBC-MAC would be fine if we could use
a block cipher with a 256-bit block size.

There are other reasons why you have to be careful how you use CBC-MAC.
You cannot just CBC-MAC the message itself if you wish to authenticate
messages with different lengths, as that leads to simple attacks. For example,
suppose a and b are both one block long, and suppose the sender MACs a, b,
and a ‖ b. An attacker who intercepts the MAC tags for these messages can
now forge the MAC for the message b ‖ (M(b) ⊕ M(a) ⊕ b), which the sender
never sent. The forged tag for this message is equal to M(a ‖ b), the tag for a ‖ b.
You can figure out why this is true as an exercise, but the problem arises from
the fact that the sender MACs messages that are different lengths.

If you wish to use CBC-MAC, you should instead do the following:

1. Construct a string s from the concatenation of l and m, where l is the length
of m encoded in a fixed-length format.

2. Pad s until the length is a multiple of the block size. (See Section 4.1 for
details.)

3. Apply CBC-MAC to the padded string s.

4. Output the last ciphertext block, or part of that block. Do not output any of
the intermediate values.

The advantage of CBC-MAC is that it uses the same type of computations
as the block cipher encryption modes. In many systems, encryption and MAC

Chapter 6 ■ Message Authentication Codes 93

are the only two functions that are ever applied to the bulk data, so these are
the two speed-critical areas. Having them use the same primitive functions
makes efficient implementations easier, especially in hardware.

Still, we don’t advocate the use of CBC-MAC directly, because it is difficult to
use correctly. One alternate that we recommend is CMAC [42]. CMAC is based
on CBC-MAC and was recently standardized by NIST. CMAC works almost
exactly like CBC-MAC, except it treats the last block differently. Specifically,
CMAC xors one of two special values into the last block prior to the last block
cipher encryption. These special values are derived from the CMAC key, and
the specific one used by CMAC depends on whether the length of the message
is a multiple of the block cipher’s block length or not. The xoring of these
values into the MAC disrupts the attacks that compromise CBC-MAC when
used for messages of multiple lengths.

6.4 HMAC

Given that the ideal MAC is a random mapping with keys and messages as
input and that we already have hash functions that (try to) behave like random
mappings with messages as input, it is an obvious idea to use a hash function
to build a MAC. This is exactly what HMAC does [5, 81]. The designers of
HMAC were of course aware of the problems with hash functions, which
we discussed in Chapter 5. For this reason, they did not define HMAC to be
something simple like mac(K, m) as h(K ‖ m), h(m ‖ K), or even h(K ‖ m ‖ K),
which can create problems if you use one of the standard iterative hash
functions [103].

Instead, HMAC computes h(K ⊕ a ‖ h(K ⊕ b ‖ m)), where a and b are specified
constants. The message itself is only hashed once, and the output is hashed
again with the key. For details, see the specifications in [5, 81]. HMAC works
with any of the iterative hash functions we discussed in Chapter 5. What’s
more, because of HMAC’s design, it’s not subject to the same collision attacks
that have recently undermined the security of SHA-1 [4]. This is because, in
the case of HMAC, the beginning of the message to hash is based on a secret
key and is not known to the attacker. This means that HMAC with SHA-1 is
not as bad as straight SHA-1. But given that attacks often get better over time,
we now view HMAC with SHA-1 as too risky and do not recommend its use.

The HMAC designers carefully crafted HMAC to resist attacks, and proved
security bounds on the resulting construction. HMAC avoids key recovery
attacks that reveal K to the attacker, and avoids attacks that can be done
by the attacker without interaction with the system. However, HMAC—like
CMAC—is still limited to n/2 bits of security, as there are generic birthday
attacks against the function that make use of the internal collisions of the

94 Part II ■ Message Security

iterated hash function. The HMAC construction ensures that these require 2n/2

interactions with the system under attack, which is more difficult to do than
performing 2n/2 computations on your own computer.

The HMAC paper [5] presents several good examples of the problems
that arise when the primitives (in this case, the hash function) have unex-
pected properties. This is why we are so compulsive about providing simple
behavioral specifications for our cryptographic primitives.

We like the HMAC construction. It is neat, efficient, and easy to implement.
It is widely used with the SHA-1 hash function, and by now you will find it in
a lot of libraries. Still, to achieve our 128-bit security level, we would only use
it with a 256-bit hash function such as SHA-256.

6.5 GMAC

NIST recently standardized a new MAC, called GMAC [43], that is very
efficient in hardware and software. GMAC was designed for 128-bit block
ciphers.

GMAC is fundamentally different from CBC-MAC, CMAC, and HMAC.
The GMAC authentication function takes three values as input—the key, the
message to authenticate, and a nonce. Recall that a nonce is a value that is only
ever used once. CBC-MAC, CMAC, and HMAC do not take a nonce as input.
If a user MACs a message with a key and a nonce, the nonce will also need
to be known by the recipient. The user could explicitly send the nonce to the
recipient, or the nonce might be implicit, such as a packet counter that both
the sender and the recipient maintain.

Given its different interface, GMAC doesn’t meet our preferred definition
of MAC in Section 6.2, which involves being unable to distinguish it from
an ideal MAC function. Instead, we have to use the unforgeability definition
mentioned at the end of that section. Namely, we consider a model in which
an attacker selects n different messages of his choosing, and is given the MAC
value for each of these messages. The attacker then has to come up with n + 1
messages, each with a valid MAC value. If an attacker can’t do this, then the
MAC is unforgeable.

Under the hood, GMAC uses something called an universal hash func-
tion [125]. This is very different from the types of hash functions we discussed
in Chapter 5. The details of how universal hash functions work are outside
our scope, but you can think of GMAC as computing a simple mathematical
function of the input message. This function is much simpler than anything
like SHA-1 or SHA-256. GMAC then encrypts the output of that function with
a block cipher in CTR mode to get the tag. GMAC uses a function of its nonce
as the IV for CTR mode.

Chapter 6 ■ Message Authentication Codes 95

GMAC is standardized and is a reasonable choice in many circumstances.
But we also want to offer some words of warning. Like HMAC and CMAC,
GMAC only provides at most 64 bits of security. Some applications may
wish to use tags that are shorter than 128 bits. However, unlike HMAC and
CMAC, GMAC offers diminished security for these short tag values. Suppose
an application uses GMAC but truncates the tags so that they are 32 bits long.
One might expect the resulting system to offer 32 bits of security, but in fact it
is possible to forge the MAC after 216 tries [48]. Our recommendation is to not
use GMAC when you need to produce short MAC values.

Finally, requiring the system to provide a nonce can be risky because security
can be undone if the system provides the same value for the nonce more than
once. As we discussed in Section 4.7, real systems fail time and time again for
not correctly handling nonce generation. We therefore recommend avoiding
modes that expose nonces to application developers.

6.6 Which MAC to Choose?

As you may have gathered from the previous discussion, we would choose
HMAC-SHA-256: the HMAC construction using SHA-256 as a hash function.
We really want to use the full 256 bits of the result. Most systems use 64- or
96-bit MAC values, and even that might seem like a lot of overhead. As far
as we know, there is no collision attack on the MAC value if it is used in the
traditional manner, so truncating the results from HMAC-SHA-256 to 128 bits
should be safe, given current knowledge in the field.

We are not particularly happy with this situation, as we believe that it should
be possible to create faster MAC functions. But until suitable functions are
published and analyzed, and become broadly accepted, there is not a whole
lot we can do about it. GMAC is fast, but provides only at most 64 bits of
security and isn’t suitable when used to produce short tags. It also requires a
nonce, which is a common source of security problem.

Some of the submissions for NIST’s SHA-3 competition have special modes
that allow them to be used to create faster MACs. But that competition is still
ongoing and it is too early to say with much confidence which submissions
will be deemed secure.

6.7 Using a MAC

Using a MAC properly is much more complicated than it might initially seem.
We’ll discuss the major problems here.

When Bob receives the value mac(K, m), he knows that somebody who knew
the key K approved the message m. When using a MAC, you have to be very

96 Part II ■ Message Security

careful that this statement is sufficient for all the security properties that you
need. For example, Eve could record a message from Alice to Bob, and then
send a copy to Bob at a later time. Without some kind of special protection
against these sorts of attacks, Bob would accept it as a valid message from
Alice. Similar problems arise if Alice and Bob use the same key K for traffic in
two directions. Eve could send the message back to Alice, who would believe
that it came from Bob.

In many situations, Alice and Bob want to authenticate not only the message
m, but also additional data d. This additional data includes things like the
message number used to prevent replay attacks, the source and destination of
the message, and so on. Quite frequently these fields are part of the header of
the authenticated (and often encrypted) message. The MAC has to authenticate
d as well as m. The general solution is to apply the MAC to d ‖ m instead of
just to m. (Here we’re assuming that the mapping from d and m to d ‖ m is
one-to-one; otherwise, we’d need to use a better encoding.)

The next issue is best captured in the following design rule:

The Horton Principle: Authenticate what is meant, not what is said.

A MAC only authenticates a string of bytes, whereas Alice and Bob want to
authenticate a message with a specific meaning. The gap between what is said
(i.e., the bytes sent) and what is meant (i.e., the interpretation of the message)
is important.

Suppose Alice uses the MAC to authenticate m := a ‖ b ‖ c, where a, b, and
c are some data fields. Bob receives m, and splits it into a, b, and c. But how
does Bob split m into fields? Bob must have some rules, and if those rules
are not compatible with the way Alice constructed the message, Bob will
get the wrong field values. This would be bad, as Bob would have received
authenticated bogus data. Therefore, it is vital that Bob split m into the fields
that Alice put in.

This is easy to do in simple systems. Fields have a fixed size. But soon you
will find a situation in which some fields need to be variable in length, or a
newer version of the software will use larger fields. Of course, a new version
will need a backward compatibility mode to talk to the old software. And here
is the problem. Once the field length is no longer constant, Bob is deriving it
from some context, and that context could be manipulated by the attacker. For
example, Alice uses the old software and the old, short field sizes. Bob uses
the new software. Eve, the attacker, manipulates the communications between
Alice and Bob to make Bob believe that the new protocol is in use. (Details
of how this works are not important; the MAC system shouldn’t depend on
other parts of the system being secure.) Bob happily splits the message using
the larger field sizes, and gets bogus data.

Chapter 6 ■ Message Authentication Codes 97

This is where the Horton Principle [122] comes in.1 You should authenticate
the meaning, not the message. This means that the MAC should authenticate
not only m, but also all the information that Bob uses in parsing m into its
meaning. This would typically include data like protocol identifier, protocol
version number, protocol message identifier, sizes for various fields, etc. One
partial solution is to not just concatenate the fields but use a data structure like
XML that can be parsed without further information.

The Horton Principle is one of the reasons why authentication at lower
protocol levels does not provide adequate authentication for higher-level
protocols. An authentication system at the IP packet level cannot know how
the e-mail program is going to interpret the data. This precludes it from
checking that the context in which the message is interpreted is the same as the
context in which the message was sent. The only solution is to have the e-mail
program provide its own authentication of the data exchanged—in addition
to the authentication on the lower levels, of course.

To recap: whenever you do authentication, always think carefully about
what other information should be included in the authentication. Be sure that
you code all of this information, including the message, into a string of bytes in
a way that can be parsed back into the fields in a unique manner. Do not forget
to apply this to the concatenation of the additional data and the message we
discussed at the start of this section. If you authenticate d ‖ m, you had better
have a fixed rule on how to split the concatenation back into d and m.

6.8 Exercises

Exercise 6.1 Describe a realistic system that uses CBC-MAC for message
authentication and that is vulnerable to a length extension attack against
CBC-MAC.

Exercise 6.2 Suppose c is one block long, a and b are strings that are a
multiple of the block length, and M(a ‖ c) = M(b ‖ c). Here M is CBC-MAC.
Then M(a ‖ d) = M(b ‖ d) for any block d. Explain why this claim is true.

Exercise 6.3 Suppose a and b are both one block long, and suppose the
sender MACs a, b, and a ‖ b with CBC-MAC. An attacker who intercepts
the MAC tags for these messages can now forge the MAC for the message
b ‖ (M(b) ⊕ M(a) ⊕ b), which the sender never sent. The forged tag for this

1For readers who did not grow up in the U.S.: this is named after one of the characters of
Dr. Seuss, who was a writer of children’s books [116].

98 Part II ■ Message Security

message is equal to M(a ‖ b), the tag for a ‖ b. Justify mathematically why this
is true.

Exercise 6.4 Suppose message a is one block long. Suppose that an attacker
has received the MAC t for a using CBC-MAC under some random key
unknown to the attacker. Explain how to forge the MAC for a two-block
message of your choice. What is the two-block message that you chose? What
is the tag that you chose? Why is your chosen tag a valid tag for your two-block
message?

Exercise 6.5 Using an existing cryptography library, compute the MAC of
the message

4D 41 43 73 20 61 72 65 20 76 65 72 79 20 75 73

65 66 75 6C 20 69 6E 20 63 72 79 70 74 6F 67 72

61 70 68 79 21 20 20 20 20 20 20 20 20 20 20 20

using CBC-MAC with AES and the 256-bit key

80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01.

Exercise 6.6 Using an existing cryptography library, compute the MAC of
the message

4D 41 43 73 20 61 72 65 20 76 65 72 79 20 75 73

65 66 75 6C 20 69 6E 20 63 72 79 70 74 6F 67 72

61 70 68 79 21

using HMAC with SHA-256 and the key

0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b

0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b.

Exercise 6.7 Using an existing cryptography library, compute the MAC of
the message

4D 41 43 73 20 61 72 65 20 76 65 72 79 20 75 73

65 66 75 6C 20 69 6E 20 63 72 79 70 74 6F 67 72

61 70 68 79 21

using GMAC with AES and the 256-bit key

80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

and the nonce

00 00 00 00 00 00 00 00 00 00 00 01.

C H A P T E R

7

The Secure Channel

Finally we come to the first of the real-world problems we will solve. The
secure channel is probably the most common of all practical problems.

7.1 Properties of a Secure Channel

Informally, we can define the problem as creating a secure connection between
Alice and Bob. We’ll have to formalize this a bit before it becomes clear what
we are talking about.

7.1.1 Roles
First, most connections are bi-directional. Alice sends messages to Bob, and
Bob sends messages to Alice. You don’t want to confuse the two streams of
messages, so there must be some kind of asymmetry in the protocol. In real
systems, maybe one party is the client and the other the server, or maybe it is
easier to speak of the initiator (the party that initiated the secure connection)
and the responder. It doesn’t matter how you do it, but you have to assign the
Alice and Bob roles to the two parties in question in such a way that each of
them knows who is playing which role.

Of course, there is always Eve, who tries to attack the secure channel in
any way possible. Eve can read all of the communications between Alice and
Bob and arbitrarily manipulate these communications. In particular, Eve can
delete, insert, or modify data that is being transmitted.

99

100 Part II ■ Message Security

We always talk about transmitting messages from Alice to Bob, and most of
the time our mental image is of two separate computers sending messages to
each other over a network of some sort. Another very interesting application
is storing data securely. If you think of storing data as transmitting it to
the future, then all the discussions here apply. Alice and Bob might be the
same person, and the transmission medium could be a backup tape or a USB
stick. You still want to protect the medium from outside eavesdroppers and
manipulations. Of course, when you send data to the future, you cannot have
an interactive protocol, since the future cannot send a message back to the past.

7.1.2 Key
To implement a secure channel, we need a shared secret. In this case we
will assume that Alice and Bob share a secret key K, but that nobody else
knows this key. This is an essential property. The cryptographic primitives
can never identify Alice as a person. They can at most identify the key. Thus
Bob’s verification algorithm will tell him something like: ‘‘This message was
sent by somebody who knows the key K and who played the role of Alice.’’
This statement is only useful if Bob knows that knowledge of K is restricted,
preferably to himself and Alice.

How the key is established is not our business here. We just assume the key
is there. We will talk about key management in great detail in Chapter 14. The
requirements for the key are as follows:

The key K is known only to Alice and Bob.

Every time the secure channel is initialized, a new value is generated for
the key K.

The second item is also important. If the same key is used over and over
again, then messages from older sessions can be replayed to Alice or Bob, and
lead to much confusion. Therefore, even in situations where you have a fixed
password as key, you need a key negotiation protocol between Alice and Bob
to set up a suitable unique key K, and you must re-run this protocol every
time a secure channel is established. A key such as K that is used for a single
communication session is called a session key. Again, how K is generated will
be discussed in Chapter 14.

The secure channel is designed to achieve a security level of 128 bits.
Following our discussion in Section 3.5.7, we will use a 256-bit key. Thus, K is
a 256-bit value.

7.1.3 Messages or Stream
The next question is whether we look at the communications between Alice
and Bob as a sequence of discrete messages (such as e-mails) or as a continuous
stream of bytes (such as streaming media). We will only consider systems that

Chapter 7 ■ The Secure Channel 101

handle discrete messages. These can trivially be converted to handle a stream
of bytes by cutting the data stream into separate messages and reassembling
the stream at the receiver’s end. In practice, almost all systems use a discrete
message system at the cryptographic layer.

We also assume that the underlying transport system that conveys the
messages between Alice and Bob is not reliable. Even a reliable communication
protocol like TCP/IP does not form a reliable communication channel from a
cryptographic point of view. After all, the attacker can easily change, remove,
or insert data in a TCP stream without interrupting the flow of data. TCP is
only reliable with respect to random events such as loss of packet. It does not
protect against an active adversary. From our adversarial point of view, there
is no such thing as a reliable communication protocol. (This is a good example
of how cryptographers view the world.)

7.1.4 Security Properties
We can now formulate the security properties of the channel. Alice sends
a sequence of messages m1, m2, . . . that are processed by the secure channel
algorithms and then sent to Bob. Bob processes the received messages through
the secure channel algorithms, and ends up with a sequence of messages
m′

1, m′
2,

The following properties must hold:

Eve does not learn anything about the messages mi except for their timing
and size.

Even when Eve attacks the channel by manipulating the data that is being
communicated, the sequence m′

1, m′
2, . . . of messages that Bob receives is

a subsequence of m1, m2, . . ., and Bob learns exactly which subsequence
he received. (A subsequence is best defined by saying that it can be
constructed from the original sequence by the removal of zero or more
elements.)

The first property is secrecy. Ideally, Eve should not learn anything about
the messages. In real life, this is very hard to achieve. It is extremely hard
to hide information such as the size or the timing of the messages. The
known solutions require Alice to send a continuous stream of messages at
the maximum bandwidth that she will ever use. If she doesn’t have any
messages to send, she should invent some trivial ones and send those. This
might be acceptable for military applications, but it is not acceptable for most
civilian applications. Given that Eve can see the size and timing of messages
on a communication channel, she can find out who is communicating with
whom, how much, and when. This is called traffic analysis. It yields a host of
information, and is extremely hard to prevent. This is a well-known problem
with other secure channels, like SSL/TLS, IPsec, and SSH. We will not solve it in
this book, so Eve will be able to perform traffic analysis on our secure channel.

102 Part II ■ Message Security

The second property ensures that Bob only gets proper messages, and that
he gets them in their correct order. Ideally, we would want Bob to receive
the exact sequence of messages that Alice sent. But none of the real-world
communications protocols are reliable in a cryptographic sense. Eve can always
delete a message in transit. As we cannot prevent the loss of messages, Bob will
necessarily have to make do with getting only a subsequence of the messages.
Note that the remaining messages that he does receive are in order. There
are no duplicates, no modified messages, and no bogus messages sent by
someone other than Alice. As a further requirement, Bob learns exactly which
messages he has missed. This can be important in some applications where the
interpretation of the message depends on the order in which they are received.

In most situations, Alice wants to ensure that Bob gets all the informa-
tion she sent him. Most systems implement a scheme whereby Bob sends
acknowledgments (either explicit or implicit) to Alice, and Alice resends any
information for which she didn’t receive an acknowledgment from Bob. Note
that our secure channel never takes the initiative in resending a message. Alice
will have to do that herself, or at least the protocol layer that makes use of the
secure channel will have to do that.

So why not make the secure channel reliable by implementing the resend
functionality inside the secure channel? Because that would complicate the
secure channel description. We like to keep the security-critical modules
simple. Message acknowledgments and resends are standard communication
protocol techniques, and they can be implemented on top of our secure channel.
Also, this is a book about cryptography, not about basic communication
protocol techniques.

7.2 Order of Authentication and Encryption

Obviously we will apply both encryption and authentication to the message.
There are three approaches [7, 82]: we can encrypt first and then authenticate
the ciphertext (encrypt-then-authenticate); authenticate first and then encrypt
both the message and the MAC value (authenticate-then-encrypt); or both
encrypt the message and authenticate the message and then combine (such
as concatenate) the two results (encrypt-and-authenticate). There is no simple
answer for which method is best.

There are two main arguments in favor of encrypting first. There are
theoretical results that show that, given certain specific definitions of secure
encryption and authentication, the encrypt-first solution is secure, whereas
the other approaches are insecure. If you look at the details, it turns out that
authenticate-first is only insecure if the encryption scheme has a specific type
of weakness. In practical systems, we never use encryption schemes with such

Chapter 7 ■ The Secure Channel 103

weaknesses. However, these weak encryption schemes satisfy a particular
formal security definition. Applying the MAC to the ciphertext of such a
weak encryption scheme fixes it and makes it secure. Having these theoretical
results is valuable. But these theoretical results don’t always apply to real-life
encryption schemes. In fact, there are similar proofs that these problems do not
occur at all for stream ciphers (such as CTR mode) and CBC-mode encryption
when the nonce or IV is authenticated.

The second argument in favor of encrypting first is that it is more efficient
in discarding bogus messages. For normal messages, Bob has to both decrypt
the message and check the authentication, irrespective of the order they were
applied in. If the message is bogus (i.e., has a wrong MAC field) then Bob
will discard it. With encrypt-first, the decryption is done last on the receiver
side, and Bob never has to decrypt bogus messages, since he can identify and
discard them before decryption. With authenticate-first, Bob has to decrypt
the message before he can check the authentication. This is more work for
bogus messages. The situation in which this is relevant is when Eve sends
Bob a very large number of bogus messages. With encrypt-first, Bob saves
the work of decrypting them, which reduces the CPU load. Under some very
special circumstances, this makes a denial-of-service (DOS) attack a little bit
harder, though only by a factor of at most approximately two. Further, in
many real-life situations, a more effective DOS attack works by saturating the
communication channel rather than by bogging down Bob’s CPU.

The main argument for encrypt-and-authenticate is that the encryption and
authentication processes can happen in parallel. This can increase performance
in some situations. Under the encrypt-and-authenticate composition approach,
an attacker can view the MAC tag of the initial message itself. This is because
the MAC is not encrypted (unlike the authenticate-then-encrypt approach)
and because the MAC is not of an encrypted value (unlike the encrypt-
then-authenticate approach). MACs are designed to protect authenticity, not
privacy. This means the MAC in an encrypt-and-authenticate approach could
leak private information about the underlying message, thereby compromising
the privacy of the secure channel. As with authenticate-first, there are also some
underlying encryption schemes that are insecure when used in an encrypt-and-
authenticate approach. With judicious choice of the underlying MAC and the
underlying encryption scheme, and by including additional data like the nonce
in the input to the MAC, the encrypt-and-authenticate approach can be secure.

There are two main arguments in favor of authenticating first. In the encrypt-
first configuration, the MAC input and MAC value are both visible to Eve.
In the authenticate-first configuration, Eve only gets to see the ciphertext and
the encrypted MAC value; the MAC input (i.e., the plaintext) and actual MAC
value are hidden. This makes it much harder to attack the MAC than in the
encrypt-first situation. The real choice is which of the two functions is applied
last. If encryption is applied last, then Eve gets to attack the encryption function

104 Part II ■ Message Security

without further hindrance. If the authentication function is applied last, she
gets to attack the authentication function without further hindrance. In many
cases, one can argue that authentication is more important than encryption.
We therefore prefer to expose the encryption function to Eve’s direct attacks,
and protect the MAC as much as possible. Of course, these issues are moot if
both the underlying encryption scheme and MAC are secure, but we take an
approach of professional paranoia and would like a secure channel with some
robustness even if we do not assume that.

When might authentication be more important than encryption? Imagine a
situation in which a secure channel is being used. Consider how much damage
Eve could do if she could read all the traffic. Then think about how much
damage Eve could do if she could modify the data being communicated. In
most situations, modifying data is a devastating attack, and does more damage
than merely reading it.

The second argument in favor of authenticating first is the Horton Principle.
You should authenticate what you mean, not what you say. Authenticating
the ciphertext breaks this rule, and creates a vulnerability. The danger is
that Bob might check that the ciphertext is correctly authenticated, but then
decrypt the ciphertext with a different key than what Alice used to encrypt
the message. Bob will get a different plaintext than Alice sent, even though
the authentication checked out. This shouldn’t happen, but it can. There is
a particular (unusual) configuration of IPsec that has this problem [51]. This
vulnerability has to be fixed. You could include the encryption key in the
additional data being authenticated, but we don’t like using keys for anything
but their normal use. It introduces extra risks; you don’t want a faulty MAC
function leaking information about the encryption key. The standard solution
is to derive both the encryption key and the authentication key for the secure
channel from a single secure channel key, as we do in Section 7.4.1. This
removes the vulnerability, but it also introduces a cross-dependency. The
authentication suddenly depends on the key derivation system.

You can argue for hours which order of operations is better. All orders
can result in good systems, all can result in bad systems. Each has its own
advantages and disadvantages. We choose to authenticate first for the rest of
this chapter. We like the simplicity of authenticate-first, and its security under
our practical paranoia model.

7.3 Designing a Secure Channel: Overview

The solution consists of three components: message numbering, authentica-
tion, and encryption. We will walk through the design of one possible secure
channel and, in the process, illustrate how to think about the underlying issues.

Chapter 7 ■ The Secure Channel 105

7.3.1 Message Numbers

Message numbers are vital for various reasons. They provide a source for
IVs for the encryption algorithm; they allow Bob to reject replayed messages
without the necessity of keeping a large database; they tell Bob which messages
were lost in transit; and they ensure that Bob receives the messages in
their correct order. For these reasons, the message numbers must increase
monotonically (i.e., later messages have larger message numbers) and must be
unique (no two messages may have the same message number).

Assigning message numbers is easy. Alice numbers the first message as 1,
the second message as 2, etc. Bob keeps track of the message number of the
last message he received. Any new message must have a message number that
is larger than the message number of the previous message. By accepting only
increasing message numbers, Bob ensures that Eve cannot replay him an old
message.

For our secure channel design, we will use a 32-bit number for the message
number. The first message is numbered 1. The number of messages is limited
to 232 − 1. If the message number overflows, then Alice will have to stop using
this key and rerun the key negotiation protocol to generate a new key. The
message number must be unique, so we cannot allow it to wrap back to 0.

We could have used a 64-bit message number, but that has a higher
overhead. (We would have to include 8 bytes of message number with each
message, instead of only 4 bytes.) 32 bits is enough for most applications.
Besides, the key should be changed regularly anyway.1 You can, of course, use
40 or 48 bits if you want to; it doesn’t matter much.

Why start numbering at 1 when most C programmers like to start at 0?
This is a small implementation trick. If there are N numbers that could be
assigned, then both Alice and Bob need to be able to keep track of N + 1
states. After all, the number of messages sent so far could be any of the
set { 0, . . . , N }. By restricting ourselves to 232 − 1 messages, this state can be
encoded in a single 32-bit number. Had we started numbering the messages
at 0, then each implementation would require an additional flag to indicate
that either no messages had been sent so far, or that the message number
space was exhausted. Extra flags add a lot of tricky extra code that is executed
very rarely. If it is rarely used, it will have been tested only a few times, and
therefore there’s a higher chance it won’t work. In short, there is an entire area
of easy mistakes that we can eliminate by starting our numbering at 1.

Throughout the rest of this chapter we’ll write i for the message number.

1All keys should be updated at reasonable intervals. Heavily used keys should be updated more
often. Restricting a key to 232 − 1 messages is quite reasonable.

106 Part II ■ Message Security

7.3.2 Authentication
We need a MAC for the authentication function. As you might expect, we
will use HMAC-SHA-256 with the full 256-bit result. The input to the MAC
consists of the message mi and the extra authentication data xi. As we explained
in Chapter 6, there is often some contextual data that has to be included in
the authentication. This is the context data that Bob will use to interpret
what the message means; it typically includes something that identifies the
protocol, the protocol version number, and the negotiated field sizes. We are
just specifying the secure channel here; the actual value for xi will have to be
provided by the rest of the application. From our point of view, each xi is a
string and both Alice and Bob have the same value for xi.

Let �(·) be the function that returns the length (in bytes) of a string of data.
The MAC value a is computed as

ai := mac(i ‖ �(xi) ‖ xi ‖ mi)

where i and �(xi) are both 32-bit unsigned integers in least-significant-byte-first
format. The �(xi) ensures that the string i ‖ �(xi) ‖ xi ‖ mi uniquely parses into
its fields. Without �(xi), there would be many ways to split it into i, xi, and mi,
and as a result, the authentication would not be unambiguous. Of course, xi

should be encoded in such a way that it can be parsed into its different fields
without further context information, but that is not something we can ensure
at this level. The application using this secure channel will have to guarantee
that.

7.3.3 Encryption
For encryption, we will use AES in CTR mode. But wait, in Section 4.7 didn’t
we say that CTR mode is dangerous because of the nonce? Yes, we did—sort
of. We said that exposing the control of the nonce to developers is risky,
and that we have seen too many applications that are insecure because they
did not generate the nonce correctly. However, our secure channel handles
the nonce internally—it never gives control of nonce generation to any other
party. We use the message number as the unique nonce value that CTR mode
needs. So our secure channel uses CTR mode. But we still wouldn’t expose the
generation of nonces to external systems. We recommend that you never use
CTR mode directly.

We limit the size of each message to 16 · 232 bytes, which limits the block
counter to 32 bits. Of course, we could use a 64-bit counter, but 32 bits is easier
to implement on many platforms, and most applications don’t need to process
such huge messages.

Chapter 7 ■ The Secure Channel 107

The key stream consists of the bytes k0, k1, For a message with nonce i,
the key stream is defined by

k0, . . . , k236−1

:= E(K, 0 ‖ i ‖ 0) ‖ E(K, 1 ‖ i ‖ 0) ‖ · · · ‖ E(K, 232 − 1 ‖ i ‖ 0)

where each plaintext block of the cipher is built from a 32-bit block number,
the 32-bit message number, and 64 bits of zeros. The key stream is a very
long string. We will only use the first �(mi) + 32 bytes of the key stream. (We
shouldn’t have to mention that you don’t have to compute the rest of the key
stream) We concatenate mi and ai, and xor these bytes with k0, . . . , k�(mi)+31.

7.3.4 Frame Format
We cannot just send the encrypted mi ‖ ai, because Bob needs to know the
message number. The final message sent will consist of i encoded as a 32-bit
integer, least significant byte first, followed by the encrypted mi and ai.

7.4 Design Details

We can now discuss the details of the secure channel. Again, we stress that this
is not the only way to implement a secure channel, but instead an opportunity
to dive into the challenges and nuances with building a secure channel. For
convenience, we’ve defined the channel to be bi-directional, so the same key
can be used for both directions. If we define the channel to be one-directional,
then you can bet that somebody will use the same key for both directions and
utterly destroy the security. Making the channel bi-directional reduces this
risk. On the flip side, if you’re using a secure channel defined by someone else,
be extra careful not to use the same key in both directions.

We describe all our algorithms using a pseudocode notation that should
be easy to read for anyone familiar with the conventions of programming.
Program blocks are denoted both by the indent level and by paired key words
such as if/fi and do/od.

7.4.1 Initialization
The first algorithm we show is the initialization of the channel data. This has
two main functions: setting up the keys and setting up the message numbers.
We derive four subsidiary keys from the channel key: an encryption key and
an authentication key to send messages from Alice to Bob, and an encryption
key and an authentication key to send messages from Bob to Alice.

108 Part II ■ Message Security

function InitializeSecureChannel
input: K Key of the channel, 256 bits.

R Role. Specifies if this party is Alice or Bob.
output: S State for the secure channel.

First compute the four keys that are needed. The four strings are ASCII strings
without any length or zero-termination.

KeySendEnc ← SHAd-256(K ‖ ‘‘Enc Alice to Bob’’)
KeyRecEnc ← SHAd-256(K ‖ ‘‘Enc Bob to Alice’’)
KeySendAuth ← SHAd-256(K ‖ ‘‘Auth Alice to Bob’’)
KeyRecAuth ← SHAd-256(K ‖ ‘‘Auth Bob to Alice’’)
Swap the encryption and decryption keys if this party is Bob.
if R = ‘‘Bob’’ then

swap(KeySendEnc, KeyRecEnc)
swap(KeySendAuth, KeyRecAuth)

fi
Set the send and receive counters to zero. The send counter is the number of the

last sent message. The receive counter is the number of the last received
message.

(MsgCntSend, MsgCntRec) ← (0, 0)
Package the state.
S ← (KeySendEnc,

KeyRecEnc,
KeySendAuth,
KeyRecAuth,
MsgCntSend,
MsgCntRec)

return S
There is also a function to wipe the state information S. We will not

specify this in any detail. All it does is wipe the memory that S used to store
information. It is vital that this information be wiped because the keys were
stored in that area. On many systems, just deallocating the memory doesn’t
necessarily wipe it, so you must erase S when you are done with it.

7.4.2 Sending a Message
We now turn to the processing required to send a message. This algorithm
takes the session state, a message to send, and additional data to be authen-
ticated, and produces the encrypted and authenticated message ready for
transmission. The recipient must have the same additional data at hand to
check the authentication.

Chapter 7 ■ The Secure Channel 109

function SendMessage
input: S Secure session state.

m Message to be sent.
x Additional data to be authenticated.

output: t Data to be transmitted to the receiver.

First check the message number and update it.
assert MsgCntSend < 232 − 1
MsgCntSend ← MsgCntSend + 1
i ← MsgCntSend
Compute the authentication. The values �(x) and i are encoded in four bytes, least

significant byte first.
a ← HMAC-SHA-256(KeySendAuth, i ‖ �(x) ‖ x ‖ m)
t ← m ‖ a
Generate the key stream. Each plaintext block of the block cipher consists of a

four-byte counter, four bytes of i, and eight zero bytes. Integers are
LSByte first, E is AES encryption with a 256-bit key.

K ← KeySendEnc
k ← EK(0 ‖ i ‖ 0) ‖ EK(1 ‖ i ‖ 0) ‖ · · ·
Form the final text. Again, i is encoded as four bytes, LSByte first.
t ← i ‖ (t ⊕ First-�(t)-bytes(k))
return t

Given our earlier discussions, this is relatively straightforward. We check for
exhaustion of the message counter. We cannot stress enough how important
this check is. If the counter ever wraps, the entire security falls apart—and
this is a mistake we’ve seen often. The authentication and encryption are as
described in our previous discussion. Finally, we send i with the encrypted
and authenticated message so that the receiver will know the message number.

Note that the session state is updated because the MsgCntSend value is
modified. Again, this is vital, as the message number must be unique. In fact,
almost everything in these algorithms is vital for the security.

Our secure channel uses CTR mode for encryption. If the encryption scheme
requires padding, be sure to verify the contents of the padding when you
decrypt.

7.4.3 Receiving a Message
The receiving algorithm requires the encrypted and authenticated message that
SendMessage produced and the same additional data x to be authenticated.
We assume the receiver knows x through some out-of-band means. For

110 Part II ■ Message Security

example, if x contains the protocol version number, then surely Bob must
know this if he’s participating in the protocol.

function ReceiveMessage
input: S Secure session state.

t Text received from the transmitter.
x Additional data to be authenticated.

output: m Message that was sent.

The received message must contain at least a 4-byte message number and a 32-byte
MAC field. This check ensures that all the future splitting operations
will work.

assert �(t) ≥ 36
Split t into i and the encrypted message plus authenticator. The split is well-defined

because i is always 4 bytes long.
i ‖ t ← t
Generate the key stream, just as the sender did.
K ← KeyRecEnc
k ← EK(0 ‖ i ‖ 0) ‖ EK(1 ‖ i ‖ 0) ‖ · · ·
Decrypt the message and MAC field, and split. The split is well-defined because a

is always 32 bytes long.
m ‖ a ← t ⊕ First-�(t)-bytes(k)
Recompute the authentication. The values �(x) and i are encoded in four bytes,

least significant byte first.
a′ ← HMAC-SHA-256(KeyRecAuth, i ‖ �(x) ‖ x ‖ m)
if a′
= a then

destroy k, m
return AuthenticationFailure

else if i ≤ MsgCntRec then
destroy k, m
return MessageOrderError

fi
MsgCntRec ← i
return m

We have used the canonical order for the operations here. You could put
the check on the message number before the decryption, but then this function
would report the wrong error if i were mangled during transmission. Instead
of notifying the caller that the message was mangled, it would notify the caller
that the message is in the wrong order. As the caller might wish to handle the
two situations differently, this routine should not give the wrong information.
The reason some people like to put the check earlier is that it allows false
messages to be discarded more quickly. We don’t consider this to be of great

Chapter 7 ■ The Secure Channel 111

importance; if you receive so many false packets that the speed of discarding
them becomes significant, you already have much bigger problems.

There is one very important issue for the receiver. The ReceiveMessage
function may not release any information about the key stream or the plaintext
message until the authentication has been verified. If the authentication fails, a
failure indication is returned, but neither the key stream nor the plaintext may
be revealed. An actual implementation should wipe the memory areas used
to store these elements. So why is this so important? The plaintext message
reveals the key stream, because it is assumed that every attacker knows the
ciphertext. The danger is that the attacker will send a fake message (with an
incorrect MAC value) but still learn the key stream from the data released by
the receiver. This is the paranoia model at work again. Any data released or
leaked by this routine is automatically assumed to end up in possession of the
attacker. By destroying the data held in k and m before returning with an error,
this routine ensures that this data can never be leaked.

7.4.4 Message Order
Like the transmitter, the receiver updates the state S by modifying the
MsgCntRec variable. The receiver ensures that the message numbers of
the messages it accepts are strictly increasing. This certainly ensures that no
message is accepted twice, but if the stream of messages is reordered during
transmission, otherwise perfectly valid messages will be lost.

It is relatively easy to fix this, but at a cost. If you let the receiver accept
messages out of order, then the application that uses the secure channel must
be able to handle these out-of-order messages. Many applications cannot deal
with this. Some applications are designed to handle it, but have subtle bugs
(often security-relevant) when messages are reordered. In most situations, we
prefer to fix the underlying transport layer and prevent accidental reordering
of messages, so that the secure channel does not have to deal with this problem.

There is one situation that we know of in which the receiver allows messages
to arrive out of order, and for a very good reason. This is IPsec, the IP security
protocol [73] that encrypts and authenticates IP packets. As IP packets can be
reordered during transport, and as all applications that use IP are very well
aware of this property, IPsec maintains a replay protection window rather
than just remembering the counter value of the last received message. If c
is the message number of the last received message, then IPsec maintains
a bitmap for the message numbers c − 31, c − 30, c − 29, . . . , c − 1, c. Each bit
indicates whether a message with the corresponding message number has
been received. Messages with numbers smaller than c − 31 are always refused.
Messages in the range c − 31 to c − 1 are only accepted if the corresponding
bit is 0 (and this bit is then set, of course). If the new message has a message
number larger than c, then c is updated and the bitmap is shifted to maintain

112 Part II ■ Message Security

the invariant. Such a bitmap construction allows some limited reordering of
the messages without adding too much state to the receiver.

Another option is to terminate the communications if a message is dropped.
This is particularly suited when the secure channel runs on top of a reliable
transport like TCP. Unless there is malicious activity, messages should arrive
in order and without any loss. So if a message is dropped or arrives out of
order, terminate the communications.

7.5 Alternatives

The secure channel definition we have given is not always practical; especially
when implementing a secure channel in embedded hardware, it becomes
relatively costly to implement SHA-256. As an alternative, there has recently
been interest in creating dedicated block cipher modes for providing both
privacy and authenticity at the same time.

These dedicated privacy-and-authenticity block cipher modes take a single
key as input, just like CBC mode and CBC-MAC. These modes generally also
take a message as input, additional data to be authenticated, and a nonce.
These modes are not as simple as just using CBC mode and CBC-MAC with
the same key, however. Using the same key for both a regular encryption
mode and a regular MAC can lead to security problems.

The most well-known initial combined mode is OCB [109]. This mode is
very efficient. Each plaintext block can be processed in parallel, which is
attractive for high-speed hardware. The existence of patents has limited OCB’s
adoption.

Because of the patent issues surrounding OCB, and because of the need for
a dedicated, single-key block cipher mode for encryption and authentication,
Doug Whiting, Russ Housley, and Niels developed a mode called CCM [126].
It is a combination of CTR mode encryption and CBC-MAC authentication,
but with care taken to allow for the use of the same key with both CTR mode
and CBC-MAC. Compared to OCB, it requires twice as many computations to
encrypt and authenticate a message, but as far as we know there are no patent
issues at all with CCM. The designers know of no patents that cover CCM,
and they have not applied, nor will they apply, for a patent. Jakob Jonsson
provided a proof of security for CCM [65]. NIST has since standardized CCM
as a block cipher mode [41].

To improve on the efficiency of CCM, Doug Whiting, John Viega, and Yoshi
developed another mode called CWC [80]. CWC builds on CTR mode to
provide encryption. Under the hood, CWC uses universal hashing to achieve
authenticity [125]. We mentioned but did not discuss universal hashing in
Chapter 6 when we introduced GMAC [43]. CWC’s use of universal hashing

Chapter 7 ■ The Secure Channel 113

makes CWC fully parallelizable, like OCB, but avoids the patents surrounding
OCB. David McGrew and John Viega improved on CWC with a more efficient
universal hashing function for hardware implementations. Their improved
mode is called GCM [43]. NIST has now standardized GCM as a block cipher
mode.

Just like our secure channel from earlier in this chapter, OCB, CCM, CWC,
and GCM can all take two strings as input—a message to be sent and additional
data to be authenticated. The GMAC message authentication scheme is actually
just GCM mode where the main message is the empty string.

These modes are all reasonable choices. Because they are standardized and
unencumbered by patents, we prefer CCM and GCM. Unfortunately, GCM’s
authentication capability shares the limitations of GMAC that we discussed
in Section 6.5. Therefore, although it is possible to reduce the size of the
authenticator for GCM from 128 bits to something less, we recommend not
doing so. Our recommendation is to only use GCM with the full 128-bit
authentication tag.

Another important point: OCB, CCM, CWC, GCM, and similar modes
do not by themselves provide the full secure channel. They provide the
encryption/authentication functionality, and require a key and a unique
nonce for each packet. We discussed the risks of relying on external systems
to correctly generate nonces in Section 4.7. It is easy, however, to adapt our
secure channel algorithms to use one of these block cipher modes rather than
the separate MAC and encryption functions. Instead of the four subsidiary
keys generated in InitializeSecureChannel, you will need two keys, one for
each direction of traffic. The nonce can be constructed by padding the message
number to the correct size.

Stepping back, we observe that the secure channel is one of the most use-
ful applications of cryptography, and it is used in almost all cryptographic
systems. You can construct a secure channel from good encryption and authen-
tication primitives, and there are also dedicated privacy-and-authenticity block
cipher modes that you can build upon. There are many details to pay attention
to, and all the details must of course be done correctly. A separate challenge,
which we will consider later, is establishing a symmetric key.

7.6 Exercises

Exercise 7.1 In our design of a secure channel, we said that the message
numbers must not repeat. What bad things can happen if the message numbers
do repeat?

Exercise 7.2 Modify the algorithms for the secure channel in this chapter to
use the encrypt-then-authenticate order for encryption and authentication.

114 Part II ■ Message Security

Exercise 7.3 Modify the algorithms for the secure channel in this chapter
to use the a dedicated, single-key mode for providing both encryption and
authentication. You can use OCB, CCM, CWC, or GCM as a black box.

Exercise 7.4 Compare and contrast the advantages and disadvantages among
the different orders of applying encryption and authentication when creating
a secure channel.

Exercise 7.5 Find a new product or system that uses (or should use) a
secure channel. This might be the same product or system you analyzed
for Exercise 1.8. Conduct a security review of that product or system as
described in Section 1.12, this time focusing on the security and privacy issues
surrounding the secure channel.

Exercise 7.6 Suppose Alice and Bob are communicating using the secure
channel described in this chapter. Eve is eavesdropping on the commu-
nications. What types of traffic analysis information could Eve learn by
eavesdropping on the encrypted channel? Describe a situation in which
information exposure via traffic analysis is a serious privacy problem.

C H A P T E R

8

Implementation Issues (I)

Now that we have come this far, we would like to talk a bit about implementa-
tion issues. Implementing cryptographic systems is sufficiently different from
implementing normal programs to deserve its own treatment.

The big problem is, as always, the weakest-link property (see Section 1.2).
It is very easy to screw up the security at the implementation level. In
fact, implementation errors such as buffer overflows are one of the biggest
security problems in real-world systems. With few exceptions, you don’t hear
about cryptography systems that are broken in practice. This is not because
the cryptography in most systems is any good; we’ve reviewed enough of
them to know this is not the case. It is just easier in most cases to find an
implementation-related hole than it is to find a cryptographic vulnerability,
and attackers are smart enough not to bother with the cryptography when
there is this much easier route.

So far in this book we have restricted our discussion to cryptography, but in
this chapter we will focus more on the environment in which the cryptography
operates. Every part of the system affects security, and to do a really good job,
the entire system must be designed from the ground up not just with security
in mind, but with security as one of the primary goals. The ‘‘system’’ we’re
talking about is very big. It includes everything that could damage the security
properties if it were to misbehave.

One major part is, as always, the operating system. But historically, none
of the operating systems in widespread use was designed with security as a
primary goal. And the diversity of operating systems is enormous—from the
operating systems we interact with on our desktop computers to operating
systems on embedded devices and phones. The logical conclusion to draw

115

116 Part II ■ Message Security

from this is that it is impossible to implement a secure system. We don’t know
how to do it, and we don’t know anyone else who knows how to do it, either.

Real-life systems include many components that were never designed for
security, and that makes it impossible to achieve the level of security that we
really need. So should we just give up? Of course not. When we design a
cryptographic system, we do our very best to make sure that at least our part
is secure. This might sound like an odd mentality: all we care about is our little
domain. But we do care about the other parts of the system; we just can’t do
anything about them in the context of this book. That is one of the reasons for
writing this book: to get other people to understand the insidious nature of
security, and how important it is to do it right.

Another important reason to get at least the cryptography right is one
we mentioned before: attacks on the cryptography are especially damaging
because they can be invisible. If the attacker succeeds in breaking your
cryptography, you are unlikely to notice. This can be compared to a burglar
who has a set of keys to your house. If the burglar exercises reasonable caution,
how would you ever find out?

Our long-term goal is to make secure computer systems. To achieve that
goal, everybody will have to do their part. This book is about making the
cryptography secure. Other parts of the system will have to be made secure,
too. The overall security of the system is going to be limited by the weakest
link, and we will do our utmost to ensure that the weakest link will never be
the cryptography.

Another important reason to do the cryptography right is that it is very
difficult to switch cryptographic systems once they’ve been implemented. An
operating system runs on a single computer. Cryptographic systems are often
used in communication protocols to let many computers communicate with
each other. Upgrading the operating system of a single computer is feasible,
and in practice it is done relatively often. Modifying the communication
protocols in a network is a nightmare, and as a result many networks still
use the designs of the 1970s and 1980s. We must keep in mind that any new
cryptographic system we design today, if adopted widely, is quite likely to
still be in use 30 or 50 years from now. We hope that by that time the other
parts of the system will have achieved a much higher level of security, and we
certainly don’t want cryptography to be the weakest link.

8.1 Creating Correct Programs

The core of the implementation problem is that we in the IT industry don’t
know how to write a correct program or module. (A ‘‘correct’’ program is one
that behaves exactly according to its specifications.) There are several reasons
for the difficulty we seem to have in writing correct programs.

Chapter 8 ■ Implementation Issues (I) 117

8.1.1 Specifications
The first problem is that for most programs, there is no clear description of
what they are supposed to do. If there are no specifications, then you cannot
even check whether a program is correct or not. For such programs, the whole
concept of correctness is undefined.

Many software projects have a document called the functional specification.
In theory, this should be the specification of the program. But in practice,
this document often does not exist, is incomplete, or specifies things that are
irrelevant for the behavior of the program. Without clear specifications, there
is no hope of getting a correct program.

There are really three stages in the specification process:

Requirements Requirements are an informal description of what the program
is supposed to achieve. It is really a ‘‘what can I do with it’’ document,
rather than a ‘‘how exactly do I do something with it’’ document.
Requirements are often a bit vague and leave details out in order to
concentrate on the larger picture.

Functional specification The functional specification gives a detailed and
exhaustive definition of the behavior of the program. The functional
specification can only specify things that you can measure on the outside
of the program.

For each item in the functional specification, ask yourself whether you
could create a test on the finished program that would determine whether
that item was adhered to or not. The test can only use the external behavior
of the program, not anything from the inside. If you can’t create a test for
an item, it does not belong in the functional specification.

The functional specification should be complete. That is, every piece
of functionality should be specified. Anything not in the functional
specification does not have to be implemented.

Another way to think of the functional specification is as the basis for
testing the finished program. Any item can, and should, be tested.

Implementation design This document has many names, but it specifies how
the program works internally. It contains all of the things that cannot be
tested from the outside. A good implementation design will often split
the program into several modules, and describe the functionality of each.
In turn, these module descriptions can be seen as the requirements for the
module, and the whole cycle starts all over again, this time by splitting
the module itself into multiple sub-modules.

Of these three documents, the functional specification is without a doubt
the most important one. This is the document against which the program

118 Part II ■ Message Security

will be tested when it is finished. You can sometimes get by with informal
requirements, or an implementation design that is nothing but a few sketches
on a whiteboard. But without functional specifications, there is no way to even
describe what you have achieved in the end when the program is finished.

8.1.2 Test and Fix
The second problem in writing correct programs is the test-and-fix develop-
ment method that is in almost universal use. Programmers write a program,
and then test whether it behaves correctly. If it doesn’t, they fix the bugs and
test again. As we all know, this does not lead to a correct program. It results in
a program that kind of works in the most common situations.

Back in 1972, Edsger Dijkstra commented in his Turing Award lecture
that testing can only show the presence of bugs, never the absence of bugs
[35]. This is very true, and ideally we would like to write programs that
we can demonstrate to be correct. Unfortunately, current techniques in prov-
ing the correctness of programs are not good enough to handle day-to-day
programming tasks, let alone a whole project.

Computer scientists do not know how to solve this. Maybe it will be possible
in the future to prove that a program is correct. Maybe we just need a far
more extensive and thorough testing infrastructure and methodology. But
even without having a full solution, we can certainly do our very best with the
tools we do have.

There are some simple rules about bugs that any good software engineering
book includes:

If you find a bug, first implement a test that detects the bug. Check that
the bug is detected. Then fix the bug, and check that the test no longer
finds the bug. And then keep running that test on every future version
to make sure the bug does not reappear.

Whenever you find a bug, think about what caused it. Are there any
other places in the program where a similar bug might reside? Go check
them all.

Keep track of every bug you find. Simple statistical analysis of the bugs
you have found can show you which part of the program is especially
buggy, or what type of error is made most frequently, etc. Such feedback
is necessary for a quality control system.

This is not even a bare minimum, but there is not a lot of methodology to draw
from. There are quite a few books that discuss software quality. They don’t all
agree with each other. Many of them present a particular software development
methodology as the solution, and we are always suspicious of such one-cure-
does-it-all schemes. The truth is almost always somewhere in the middle.

Chapter 8 ■ Implementation Issues (I) 119

8.1.3 Lax Attitude

The third problem is the incredibly lax attitude of many in the computer
industry. Errors in programs are frequently accepted as a matter of course. If
your word processor crashes and destroys a day’s worth of work, everybody
seems to think this is quite normal and acceptable. Often they blame the
user: ‘‘You should have saved your work more often.’’ Software companies
routinely ship products with known bugs in them. This wouldn’t be so bad
if they only sold computer games, but nowadays our work, our economy,
and—more and more—our lives depend on software. If a car manufacturer
finds a defect (bug) in a car after it was sold, they will recall the car and fix
it. Software companies get away with disclaiming any and all liability in their
software license, something they wouldn’t be allowed to do if they produced
any other product. This lax attitude means there are still not enough serious
efforts being made at producing correct software.

8.1.4 So How Do We Proceed?

Don’t ever think that all you need is a good programmer or code reviews
or an ISO 9001–certified development process or extensive testing or even
a combination of all of them. Reality is much more difficult. Software is too
complex to be tamed by a few rules and procedures. We find it instructive to
look at the best engineering quality control system in the world: the airline
industry. Everybody in that industry is involved in the safety system. There are
very strict rules and procedures for almost every operation. There are multiple
backups in case of failures. Every nut and bolt of the airplane has to be flight-
qualified before it can ever be used. Anytime a mechanic takes a screwdriver
to the plane, his work is checked and signed off by a supervisor. Every
modification is carefully recorded. Any accident is meticulously investigated
to find all the underlying causes, which are then fixed. This fanatical pursuit
of quality has a very high cost. An airplane is probably an order of magnitude
more expensive than it would be if you just sent the drawings to an ordinary
engineering firm. But the pursuit of quality has also been amazingly effective.
Flying is an entirely routine operation today, in a machine where every failure
is potentially fatal—a machine where you cannot just hit the brakes and stop
when something goes wrong. One where the only safe way back to the ground
is the quite delicate operation of landing on one of the rare specially prepared
spots in the world. The airline industry has been amazingly effective at making
flying secure. We would do well to learn all we can from them. Maybe writing
correct software would cost an order of magnitude more than what we are used
to now. But given the cost to society of the bugs in software that we see today,
we are sure it would be cost-effective in the long run.

120 Part II ■ Message Security

8.2 Creating Secure Software

So far, we have only talked about correct software. Just writing correct software
is not good enough for a security system. The software must be secure as well.

What is the difference? Correct software has a specified functionality. If you
hit button A, then B will happen. Secure software has an additional require-
ment: a lack of functionality. No matter what the attacker does, she cannot do
X. This is a very fundamental difference; you can test for functionality, but
not for lack of functionality. The security aspects of the software cannot be
tested in any effective way, which makes writing secure software much more
difficult than writing correct software. The inevitable conclusion is:

Standard implementation techniques
are entirely inadequate to create secure code.

We actually don’t know how to create secure code. Software quality is a vast
area that would take several books to cover. We don’t know enough about it
to write those books, but we do know the cryptography-specific issues and the
problems that we see most frequently, and that is what we will discuss in the
rest of this chapter.

Before we start, let us make our point of view clear: unless you are willing
to put real effort into developing a secure implementation, there is little point
in bothering with the cryptography. Designing cryptographic systems might
be fun, but cryptography is generally only a small part of a larger system.

8.3 Keeping Secrets

Anytime you work with cryptography, you are dealing with secrets. And
secrets have to be kept. This means that the software that deals with the secrets
has to ensure that they don’t leak out.

For the secure channel we have two types of secrets: the keys and the data.
Both of these secrets are transient secrets; we don’t have to store them for a
long time. The data is only stored while we process each message. The keys are
only stored for the duration of the secure channel. Here we will only discuss
keeping transient secrets. For a discussion on storing secrets long-term, see
Chapter 21.

Transient secrets are kept in memory. Unfortunately, the memory on most
computers is not very secure. We will discuss each of the typical problems
in turn.

Chapter 8 ■ Implementation Issues (I) 121

8.3.1 Wiping State
A basic rule of writing security software: wipe any information as soon as you
no longer need it. The longer you keep it, the higher the chance that someone
will be able to access it. What’s more, you should definitely wipe the data
before you lose control over the underlying storage medium. For transient
secrets, this involves wiping the memory locations.

This sounds easy to do, but it leads to a surprising number of problems. If
you write the entire program in C, you can take care of the wiping yourself.
If you write a library for others to use, you have to depend on the main
program to inform you that the state is no longer needed. For example, when
the communication connection is closed, the crypto library should be informed
so that it can wipe the secure channel session state. The library can contain
a function for this, but there’s a reasonable chance that the programmer of
the application won’t call this function. After all, the program works perfectly
well without calling this function.

In some object-oriented languages, things are a bit easier. In C++, there is a
destructor function for each object, and the destructor can wipe the state. This
is certainly standard practice for security-relevant code in C++. As long as the
main program behaves properly and destroys all objects it no longer needs, the
memory state will be wiped. The C++ language ensures that all stack-allocated
objects are properly destroyed when the stack is unwound during exception
handling, but the program has to ensure that all heap-allocated objects are
destroyed. Calling an operating system function to exit the program might not
even unwind the call stack. And you have to ensure that all sensitive data is
wiped even if the program is about to exit. After all, the operating system gives
no guarantees that it will wipe the data soon, and some operating systems don’t
even bother wiping the memory before they give it to the next application.

Even if you do all this, the computer might still frustrate your attempts.
Some compilers try too hard to optimize. A typical security-relevant function
performs some computations in local variables, and then tries to wipe them.
You can do this in C with a call to the memset function. Good compilers will
optimize the memset function to in-line code, which is more efficient. But some
of them are too clever by half. They detect that the variable or array that is
being wiped will never be used again, and ‘‘optimize’’ the memset away. It’s
faster, but suddenly the program does not behave the same way anymore. It is
not uncommon to see code that reveals data that it happens to find in memory.
If the memory is given to some library without having been wiped first, the
library might leak the data to an attacker. So check the code that your compiler
produces, and make sure the secrets are actually being wiped.

122 Part II ■ Message Security

In a language like Java, the situation is even more complicated. All objects
live on the heap, and the heap is garbage-collected. This means that the
finalization function (similar to the C++ destructor) is not called until the
garbage collector figures out that the object is no longer in use. There are no
specifications about how often the garbage collector is run, and it is quite
conceivable that secret data remains in memory for a very long time. The use
of exception handling makes it hard to do the wiping by hand. If an exception
is thrown, then the call-stack unwinds without any way for the programmer
to insert his own code, except by writing every function as a big try clause.
The latter solution is so ugly that it is impractical. It also has to be applied
throughout the program, making it impossible to create a security library for
Java that behaves properly. During exception handling, Java happily unwinds
the stack, throwing away the references to the objects without cleaning up the
objects themselves. Java is really bad in this respect. The best solution we’ve
been able to come up with is to at least ensure that the finalization routines
are run at program exit. The main method of the program uses a try-finally
statement. The finally block contains some code to force a garbage collect,
and to instruct the garbage collector to attempt to complete all the finalization
methods. (See the functions System.gc()and System.runFinalization() for
more details.) There is still no guarantee that the finalization methods will be
run, but it is the best we’ve been able to find.

What we really need is support from the programming language itself. In
C++ it is at least theoretically possible to write a program that wipes all states
as soon as they are no longer needed, but many other features of the language
make it a poor choice for security software. Java makes it very difficult to
wipe the state. One improvement would be to declare variables as ‘‘sensitive,’’
and have the implementation guarantee that they will be wiped. Even better
would be a language that always wipes all data that is no longer needed. That
would avoid a lot of errors without significantly affecting efficiency.

There are other places where secret data can end up. All data is eventually
loaded into a CPU register. Wiping registers is not possible in most program-
ming languages, but on register-starved CPUs like the x86, it is very unlikely
that any data will survive for any reasonable amount of time.

During a context-switch (when the operating system switches from running
one program to running the next program), the values in the registers of the
CPU are stored in memory where their values might linger for a long time. As
far as we know, there is nothing you can do about this, apart from fixing the
operating system to ensure the confidentiality of that data.

8.3.2 Swap File
Most operating systems (including all current Windows versions and all UNIX
versions) use a virtual memory system to increase the number of programs
that can be run in parallel. While a program is running, not all of its data is kept

Chapter 8 ■ Implementation Issues (I) 123

in memory. Some is stored in a swap file. When the program tries to access
data that is not in memory, the program is interrupted. The virtual memory
system reads the required data from the swap file into a piece of memory, and
the program is allowed to continue. What’s more, when the virtual memory
system decides that it needs more free memory, it will take an arbitrary piece
of memory from a program and write it to the swap file.

Of course, not all virtual memory systems or configurations keep the
data secret, or encrypt it before it is written to the disk. Most software is
designed for a cooperative environment, not the adversarial environment that
cryptographers work in. So our problem is the following: the virtual memory
system could just take some of the memory of our program and write it to the
swap file on disk. The program never gets told, and does not notice. Suppose
this happens to the memory in which the keys are stored. If the computer
crashes—or is switched off—the data remains on the disk. Most operating
systems leave the data on disk even when you shut them down properly.
There may be no mechanism to wipe the swap file, so the data could linger
indefinitely on disk. Who knows who will have access to this swap file in
future? We really cannot afford the risk of having our secrets written to the
swap file.1

So how do we stop the virtual memory system from writing our data to
disk? On some operating systems there are system calls that you can use to
inform the virtual memory system that specified parts of memory are not
to be swapped out. Some operating systems support a secure swap system
where the swapped-out data is cryptographically protected, but these systems
might require the user to toggle the appropriate system configuration flags. If
neither of these options is available on all the systems that you wish to run
your application, there might not be much you can do to protect against this
particular avenue of attack.

Assuming you can lock the memory and prevent it from being swapped
out, which memory should be locked? All the memory that can ever hold
secrets, of course. This brings up a secondary problem. Many programming
environments make it very hard to know where exactly your data is being
stored. Objects are often allocated on a heap, data can be statically allocated,
and many local variables end up on the stack. Figuring out the details is
complicated and very error-prone. Probably the best solution is to simply lock
all the memory of your application. Even that is not quite as easy as it sounds,
because you could lose a number of operating system services such as the
automatically allocated stack. And locking all the memory makes the virtual
memory system ineffective.

It shouldn’t be this difficult. The proper solution is, of course, to make a
virtual memory system that protects the confidentiality of the data. This is an

1In fact, we should never write secrets to any permanent media without encrypting them, but
that is an issue we will discuss later.

124 Part II ■ Message Security

operating system change, and beyond our control. Even if the next version
of your operating system were to have this feature, you should carefully
check that the virtual memory system does a good job of keeping secrets.
And, depending on your application, you may still have to deal with the fact
that your application needs to run on older systems or systems in insecure
configurations.

8.3.3 Caches
Modern computers don’t just have a single type of memory. They have a
hierarchy of memories. At the bottom is the main memory—often gigabytes in
size. But because the main memory is relatively slow, there is also a cache. This
is a smaller but faster memory. The cache keeps a copy of the most recently
used data from the main memory. If the CPU wants to access the data, it first
checks the cache. If the data is in the cache, the CPU gets the data relatively
quickly. If the data is not in the cache, it is read (relatively slowly) from main
memory, and a copy is stored in the cache for future use. To make room in the
cache, a copy of some other piece of data is thrown away.

This is important because caches keep copies of data, including copies of our
secret data. The problem is that when we try to wipe our secrets, this wiping
might not take place properly. In some systems, the modifications are only
written to the cache and not to the main memory. The data will eventually be
written to main memory, but only when the cache needs more room to store
other data. We don’t know all the details of these systems, and they change
with every CPU. There is no way to know if there is some interaction between
the memory allocation unit and the cache system that might result in some
wipe operations escaping the write-to-main-memory part when the memory
is deallocated before the cache is flushed. Manufacturers never specify how
to wipe data in a guaranteed manner. At least, we have never seen any
specifications like that, and as long as it is not specified, we can’t trust it.

A secondary danger of caches is that under some circumstances a cache
learns that a particular memory location has been modified, perhaps by the
other CPU in a multi-CPU system. The cache then marks the data it has for
that location as ‘‘invalid,’’ but typically the actual data is not wiped. Again,
there might exist a copy of our secrets that has not been wiped.

There is very little you can do about this. It is not a great danger, because in
most systems, minus physical attacks, only the OS code can access the cache
mechanisms directly. And we have to trust the operating system anyway, so
we could trust it with this as well. We are nevertheless concerned about these
designs, because they clearly do not provide the functionality that is required
to implement security systems properly.

Chapter 8 ■ Implementation Issues (I) 125

8.3.4 Data Retention by Memory
Something that surprises many people is that simply overwriting data in
memory does not delete the data. The details depend to some extent on the
exact type of memory involved, but basically, if you store data in a memory
location, that location slowly starts to ‘‘learn’’ the data. When you overwrite
or switch off the computer, the old value is not completely lost. Depending
on the circumstances, just powering the memory off and back on again can
recover some or all of the old data. Other memories can ‘‘remember’’ old data
if you access them using (often undocumented) test modes [57].

Several mechanisms cause this phenomenon. If the same data is stored for a
time in the same location in SRAM (Static RAM), then this data becomes the
preferred power-up state of that memory. A friend of ours encountered this
problem with his home-built computer long ago [17]. He wrote a BIOS that
used a magic value in a particular memory location to determine whether a
reset was a cold reboot or a warm reboot.2 After a while the machine refused
to boot after power-up because the memory had learned the magic value, and
the boot process therefore treated every reset as a warm reboot. As this did not
initialize the proper variables, the boot process failed. The solution in his case
was to swap some memory chips around, scrambling the magic value that the
SRAM had learned. For us, it was a lesson to remember: memory retains more
data than you think.

Similar processes happen in DRAM (Dynamic RAM), although they are
somewhat more complicated. DRAM works by storing a small charge on a
very small capacitor. The insulating material around the capacitor is stressed
by the resulting field. The stress results in changes to the material, specifically
causing the migration of impurities [57]. An attacker with physical control
over the memory can potentially recover this data. Additionally, because of
how DRAM capacitors discharge, their values may remain for seconds at room
temperature if power is removed or even longer if the memory is cooled.

These are important problems. The latter class of issues was recently demon-
strated in the context of cold boot attacks [59]. These researchers were able
to recover secret cryptographic keys from the memories of computers after
they were rebooted. These researchers were also able to physically extract
the memory from one computer, put that memory in another computer,
and recover the cryptographic keys. If your computer is ever compromised
(e.g., stolen), you do not want the data that you had in memory to be

2In those days home-built machines were programmed by entering the binary form of machine
language directly. This led to many errors, and the one sure way to recover from a program that
crashed was to reset the machine. A cold reboot is one after power-up. A warm reboot is the sort
performed when the user presses the reset button. A warm reboot does not reinitialize all the
state, and therefore does not wipe the settings the user made.

126 Part II ■ Message Security

compromised as well. To achieve this goal, we have to make the computer
forget information.

We can only give a partial solution, which works if we make some reasonable
assumptions about the memory. This solution, which we call a Boojum,3 works
for relatively small amounts of data, such as keys. Our description of Boojum
has been updated slightly since the first edition of this book, and includes a
defense against the cold boot attack from [59]. For Boojum, let m be the data we
want to store. Instead of storing m, we generate a random string R and store
both R and h(R) ⊕ m where h is a hash function. These two values are stored
in different memory locations, preferably not too close together. One trick is
to change R regularly. At regular intervals, say every 1 second, we generate
a new random R′, and update the memory to store R ⊕ R′ and h(R ⊕ R′) ⊕ m.
This ensures that each bit of the memory is written with a sequence of random
bits. To wipe the memory, you simply write a new m with the value zero.

To read information from this storage, you read both parts, hash the first,
and xor them together to get m. Writing is done by xoring the new data with
h(R) and storing it in the second location.

Care should be taken that the bits of R and h(R) ⊕ m are not adjacent on the
RAM chip. Without information about how the RAM chip works, this can be
difficult, but most memories store bits in a rectangular matrix of bits, with some
address bits selecting the row and other address bits selecting the column.
If the two pieces are stored at addresses that differ by 0x5555, it is highly
unlikely that the two will be stored adjacent on the chip. (This assumes that the
memory does not use the even-indexed address bits as row number and the
odd-indexed address bits as column number, but we have never seen a design
like that.) An even better solution might be to choose two random addresses
in a very large address space. This makes the probability that the two locations
are adjacent very small, independent of the actual chip layouts of the memory.

This is only a partial solution, and a rather cumbersome one at that. It is
limited to small amounts of data. But using this solution ensures that there is
no physical point on the memory chip that is continually stressed or unstressed
depending on the secret data. Further, as long as k bits of R are not recoverable,
the attacker would have to exhaustively search for those k bits before being
able to recover h(R) ⊕ m.

There is still no guarantee that the memory will be wiped. If you read the
documentation of a memory chip, there are no specifications that prevent the
chip from retaining all data ever stored in it. No chip does that, of course, but
it shows that we can at most achieve a heuristic security.

We have concentrated on the main memory here. The same solution will
work for the cache memory, except that you cannot control the position on
the chip where the data will be stored. This solution does not work for the

3After Lewis Carroll’s The Hunting of the Snark [24].

Chapter 8 ■ Implementation Issues (I) 127

CPU registers, but they are used so often for so much different data that we
doubt they will pose a data retention problem. On the other hand, extension
registers, such as floating point registers or MMX-style registers, are used far
less frequently, so they could pose a problem.

If you have large amounts of data that need to be kept secret, then the
solution of storing two copies and xoring new random strings into both copies
regularly becomes too expensive. A better solution is to encrypt a large block of
data and store the ciphertext in memory that potentially retains information.
Only the key needs to be stored in a way that avoids data retention, for
example, using a Boojum. For details, see [32].

8.3.5 Access by Others
There’s yet another problem with keeping secrets on a computer: other
programs on the same machine might access the data. Some operating systems
allow different programs to share memory. If the other program can read your
secret keys, you have a serious problem. Often the shared memory has to be
set up by both programs, which reduces the risk. In other situations, the shared
memory might be set up automatically as a result of loading a shared library.

Debuggers are especially dangerous. Modern operating systems often con-
tain features designed to be used by debuggers. Various Windows versions
allow you to attach a debugger to an already running process. The debugger
can do many things, including reading the memory. Under UNIX, it is some-
times possible to force a core-dump of a program. The core-dump is a file that
contains a memory image of the program data, including all of your secrets.

Another danger comes from especially powerful users. Called superusers,
or administrators, these users can access things on the machine that normal
users cannot. Under UNIX, for example, the superuser can read any part of
the memory.

In general, your program cannot effectively defend itself against these types
of attacks. If you are careful, you may be able to eliminate some of these
problems, but often you’ll find yourself limited in what can be achieved. Still,
you should consider these issues on the particular platform you are working on.

8.3.6 Data Integrity
In addition to keeping secrets, we should protect the integrity of the data we
are storing. We use the MAC to protect the integrity of the data during transit,
but if the data can be modified in memory, we still have problems.

In this discussion, we will assume that the hardware is reliable. If the
hardware is unreliable, there is very little you can do. If you are unsure about
the hardware reliability, perhaps you should spend part of your time and
memory simply to verify it, although that is really the operating system’s job.

128 Part II ■ Message Security

One thing we try to do is make sure the main memory on our machines is
ECC (error-correcting code) memory.4 If there is a single bit failure, then the
error-correcting code will detect and correct the error. Without ECC memory,
any bit error leads to the CPU reading the wrong data.

Why is this important? There is an enormous number of bits in a modern
computer. Suppose the engineering is done really well, and each bit has only
a 10−15 chance of failing in each second. If you have 128 MB of memory, then
you have about 109 bits of memory, and you can expect one bit failure every 11
days. The error rate increases with the amount of memory in the machine, so
it is even worse if you have 1 GB of memory, with one failure every 32 hours.
Servers typically use ECC memory because they have more memory and run
for longer periods of time. We like to have the same stability in all machines.

Of course, this is a hardware issue, and you typically don’t get to specify the
type of memory on the machine that will run the final application.

Some of the dangers that threaten data confidentiality also endanger the
data integrity. Debuggers can sometimes modify your program’s memory.
Superusers can directly modify memory, too. Again, there is nothing you can
do about it, but it is useful to be aware of the situation.

8.3.7 What to Do
Keeping a secret on a modern computer is not as easy as it sounds. There are
many ways in which the secret can leak out. To be fully effective, you have to
stop all of them. Unfortunately, current operating systems and programming
languages do not provide the required support to stop the leakage completely.
You have to do the best you can. This involves a lot of work, all of it specific
to the environment you work in.

These problems also make it very difficult to create a library with the cryp-
tographic functions in it. Keeping the secrets safe often involves modifications
to the main program. And of course, the main program also handles data
that should be kept confidential; otherwise, it wouldn’t need the cryptography
library in the first place. This is the familiar issue of security considerations
affecting every part of the system.

8.4 Quality of Code

If you create an implementation for a cryptographic system, you will have to
spend a great deal of time on the quality of the code. This book is not about
programming, but we will say a few words about code quality here.

4You have to make sure that all components of the computer support ECC memory. Beware of
slightly cheaper memory modules that do not store the extra information but instead recompute
it on the fly. This defeats the whole purpose of ECC memory.

Chapter 8 ■ Implementation Issues (I) 129

8.4.1 Simplicity
Complexity is the main enemy of security. Therefore, any security design
should strive for simplicity. We are quite ruthless about this, even though this
does not make us popular. Eliminate all the options that you can. Get rid of all
those baroque features that few people use. Stay away from committee designs,
because the committee process always leads to extra features or options in
order to achieve compromise. In security, simplicity is king.

A typical example is our secure channel. It has no options. It doesn’t allow
you to encrypt the data without authenticating it, or to authenticate the data
without encrypting it. People always ask for these features, but in many
cases they do not realize the consequences of using partial security features.
Most users are not informed enough about security to be able to select the
correct security options. The best solution is to have no options and make the
system secure by default. If you absolutely have to, provide a single option:
secure or insecure.

Many systems also have multiple cipher suites, where the user (or someone
else) can choose which cipher and which authentication function to use. If at
all possible, eliminate this complexity. Choose a single mode that is secure
enough for all possible applications. The computational difference between
the various encryption modes is not that large, and cryptography is rarely the
bottleneck for modern computers. Apart from getting rid of the complexity,
it also gets rid of the danger that users might configure their application to
use weak cipher suites. After all, if choosing an encryption and authentication
mode is so difficult that the designer can’t do it, it will be even more challenging
for a user to make an informed decision.

8.4.2 Modularization
Even after you have eliminated a lot of options and features, the resulting
system will still be quite complex. There is one main technique for making the
complexity manageable: modularization. You divide the system into separate
modules, and design, analyze, and implement each module separately.

You should already be familiar with modularization; in cryptography it
becomes even more important to do it right. Earlier we talked about crypto-
graphic primitives as modules. The module interface should be simple and
straightforward. It should behave according to the reasonable expectations of
a user of the module. Look closely at the interface of your modules. Often
there are features or options that exist to solve some other module’s problems.
If possible, rip them out. Each module should solve its own problems. We
have found that when module interfaces start to develop weird features, it is
time to redesign the software because they are almost always a result of design
deficiencies.

130 Part II ■ Message Security

Modularization is so important because it is the only efficient way we have of
dealing with complexity. If a particular option is restricted to a single module,
it can be analyzed within the context of this module. However, if the option
changes the external behavior of one module, it can affect other modules as
well. If you have 20 modules, each with a single binary option that changes the
module behavior, there are over a million possible configurations. You would
have to analyze each of these configurations for security—an impossible task.

We have found that many options are created in the quest for efficiency.
This is a well-known problem in software engineering. Many systems contain
so-called optimizations that are useless, counterproductive, or insignificant
because they do not optimize those parts of the system that form the bottleneck.
We have become quite conservative about optimizations. Usually we don’t
bother with them. We create a careful design, and try to ensure that work
can be done in large ‘‘chunks.’’ A typical example is the old IBM PC BIOS.
The routine to print a character on the screen took a single character as an
argument. This routine spent almost all of its time on overhead, and only
a very small fraction on actually putting the character on the screen. If the
interface of the routine had allowed a string as argument, then the entire string
could have been printed in only slightly more time than it took to print a
single character. The result of this bad design was that all DOS machines had
a terribly slow display. This same principle applies to cryptographic designs.
Make sure that work can be done in large enough chunks. Then only optimize
those parts of your program that you can measure as having a significant effect
on the performance.

8.4.3 Assertions
Assertions are a good tool to help improve the quality of your code.

When implementing cryptographic code, adopt an attitude of professional
paranoia. Each module distrusts the other modules, and always checks
parameter validity, enforces calling sequence restrictions, and refuses unsafe
operations. Most of the times these are straightforward assertions. If the mod-
ule specifications state that you have to initialize the object before you use
it, then using an object before initialization will result in an assertion error.
Assertion failures should always lead to an abort of the program with ample
documentation of which assertion failed, and for what reason.

The general rule is: any time you can make a meaningful check on the
internal consistency of the system, you should add an assertion. Catch as
many errors as you can, both your own and those of other programmers. An
error caught by an assertion will not lead to a security breach.

There are some programmers who implement assertion checking in devel-
opment, but switch it off when they ship the product. This is not the security
perspective. What would you think of a nuclear power station where the
operators train with all the safety systems in place, but switch them off when

Chapter 8 ■ Implementation Issues (I) 131

they go to work on the real reactor? Or a parachutist who wears his emergency
parachute while training on the ground, but leaves it off when he jumps out
of the airplane? Why would anyone ever switch off the assertion checking on
production code? That is the only place where you really need it! If an asser-
tion fails in production code, then you have just encountered a programming
error. Ignoring the error will most likely result in some kind of wrong answer,
because at least one assumption the code makes is wrong. Generating wrong
answers is probably the worst thing a program can do. It is much better to at
least inform the user that a programming error has occurred, so he does not
trust the erroneous results of the program. Our recommendation is to leave all
your error checking on.

8.4.4 Buffer Overflows
Buffer overflow problems have been known for decades. Perfectly good
solutions to avoid them have been available for the same amount of time.
Some of the earliest higher-level programming languages, such as Algol
60, completely solved the problem by introducing mandatory array bounds
checking. Even so, buffer overflows cause a huge number of security problems
on the Internet. There also exist a larger number of software attacks beyond
buffer overflows, such as format string attacks and integer overflow attacks.

But these are things we cannot change. We can give you advice on how to
write good cryptographic code. Avoid any programming language that allows
buffer overflows. Specifically: don’t use C or C++. And don’t ever switch off
the array bounds checking of whichever language you use instead. It is such a
simple rule, and will probably solve half of all your security bugs.

8.4.5 Testing
Extensive testing is always part of any good development process. Testing can
help find bugs in programs, but it is useless to find security holes. Never confuse
testing with security analysis. The two are complementary, but different.

There are two types of tests that should be implemented. The first is a generic
set of tests developed from the module’s functional specifications. Ideally, one
programmer implements the module and a second programmer implements
the tests. Both work from the functional specification. Any misunderstanding
between the two is a clear indication that the specifications have to be clarified.
The generic tests should attempt to cover the entire operational spectrum of
the module. For some modules, this is simple; for others, the test program will
have to simulate an entire environment. In much of our own code, the test
code is about as big as the operational code, and we have not found a way of
significantly improving that.

A second set of tests is developed by the programmer of the module itself.
These are designed to test any implementation limits. For example, if a module

132 Part II ■ Message Security

uses a 4 KB buffer internally, then extra tests of the boundary conditions at the
start and end of the buffer will help to catch any buffer-management errors.
Sometimes it requires knowledge of the internals of a module to devise specific
tests.

We frequently write test sequences that are driven by a random generator.
We will discuss pseudorandom number generators (prngs) extensively in
Chapter 9. Using a prng makes it very easy to run a very large number of
tests. If we save the seed we used for the prng, we can repeat the same test
sequence, which is very useful for testing and debugging. Details depend on
the module in question.

Finally, we have found it useful to have some ‘‘quick test’’ code that can
run every time the program starts up. In one of Niels’s projects, he had to
implement AES. The initialization code runs AES on a few test cases and
checks the output against the known correct answers. If the AES code is ever
destabilized during the further development of the application, this quick test
is very likely to detect the problem.

8.5 Side-Channel Attacks

There is a whole class of attacks that we call side-channel attacks [72]. These
are possible when an attacker has an additional channel of information about
the system. For example, an attacker could make detailed measurements of
the time it takes to encrypt a message. Depending on how the system is
implemented, this timing information could allow an attacker to infer private
information about the message itself or the underlying encryption key. If the
cryptography is embedded in a smart card, then the attacker can measure how
much current the card draws over time. Magnetic fields, RF emissions, power
consumption, timing, and interference on other data channels can all be used
for side-channel attacks.

Not surprisingly, side-channel attacks can be remarkably successful against
systems that are not designed with these attacks in mind. Power analysis of
smart cards is extremely successful [77].

It is very difficult, if not impossible, to protect against all forms of side-
channel attacks, but there are some simple precautions you can take. Years
ago, when Niels worked on implementing cryptographic systems in smart
cards, one of the design rules was that the sequence of instructions that
the CPU executed could only depend on information already available to
the attacker. This stops timing attacks, and makes power analysis attacks
more complicated because the sequence of instructions being executed can
no longer leak any information. It is not a full solution, and modern power
analysis techniques would have no problem breaking the smart cards that

Chapter 8 ■ Implementation Issues (I) 133

were fielded in those days. Still, that fix was about the best that could be done
with the smart cards of the day. Resistance against side-channel attacks will
always come from a combination of countermeasures—some of them in the
software that implements the cryptographic system, and some of them in the
actual hardware.

Preventing side-channel attacks is an arms race. You try to protect yourself
against the known side channels, and then a smart person somewhere discovers
a new side channel, so then you have to go back and take that one into account
as well. In real life, the situation is not that bad, because most side-channel
attacks are difficult to perform. Side channels are a real danger to smart cards
because the card is under full control of the adversary, but only a few types
of side channels are practical against most other computers. In practice, the
most important side channels are timing and RF emissions. (Smart cards are
particularly vulnerable to measuring the power consumption.)

8.6 Beyond this Chapter

We hope this chapter has made it clear that security does not start or stop with
the cryptographic design. All aspects of the system have to do their part to
achieve security.

Implementing cryptographic systems is an art in itself. The most important
aspect is the quality of the code. Low-quality code is the most common cause
of real-world attacks, and it is rather easy to avoid. In our experience, writing
high-quality code takes about as long as writing low-quality code, if you count
the time from start to finished product, rather than from start to first buggy
version. Be fanatical about the quality of your code. It can be done, and it
needs to be done, so go do it!

There are a number of great books for further reading. Among these are
Software Security: Building Security In by McGraw [88], The Security Development
Lifecycle by Howard and Lipner [62], and The Art of Software Security Assessment:
Identifying and Preventing Software Vulnerabilities by Dowd, McDonald, and
Schuh [37].

8.7 Exercises

Exercise 8.1 Describe how each of the issues in Section 8.3 applies to your
personal computer’s hardware and software configuration.

Exercise 8.2 Find a new product or system that manipulates transient secrets.
This might be the same product or system you analyzed for Exercise 1.8. Con-
duct a security review of that product or system as described in Section 1.12,

134 Part II ■ Message Security

this time focusing on issues surrounding how the system might store these
secrets (Section 8.3).

Exercise 8.3 Find a new product or system that manipulates secret data. This
might be the same product or system you analyzed for Exercise 1.8. Conduct
a security review of that product or system as described in Section 1.12, this
time focusing on issues surrounding code quality (Section 8.4).

Exercise 8.4 Monitor the bugtraq mailing list for one week. Create a table
listing all the different types of vulnerabilities that are announced or fixed
during that week, as well as the number of such vulnerabilities for each
type. What sorts of larger inferences can you draw from this table? See
http://www.schneier.com/ce.html for additional information about the bug-
traq mailing list.

../../../../../www.schneier.com/ce.html

P a r t

III
Key Negotiation

In This Part

Chapter 9: Generating Randomness

Chapter 10: Primes

Chapter 11: Diffie-Hellman

Chapter 12: RSA

Chapter 13: Introduction to Cryptographic Protocols

Chapter 14: Key Negotiation

Chapter 15: Implementation Issues (II)

C H A P T E R

9

Generating Randomness

To generate key material, we need a random number generator, or rng.
Generating good randomness is a vital part of many cryptographic operations.
Generating good randomness is also very challenging.

We won’t go into a detailed discussion of what randomness really is; an
informal discussion suffices for our purposes. A good informal definition is
that random data is unpredictable to the attacker, even if he is taking active
steps to defeat our randomness.

Good random number generators are necessary for many cryptographic
functions. Part II discussed the secure channel and its components. We
assumed there to be a key known to both Alice and Bob. That key has to
be generated somewhere. Key management systems use random number
generators to choose keys. If you get the rng wrong, you end up with a
weak key. This is exactly what happened to one of the early versions of the
Netscape browser [54].

The measure for randomness is called entropy [118]. Here’s the high-level
idea. If you have a 32-bit word that is completely random, it has 32 bits of
entropy. If the 32-bit word takes on only four different values, and each value
has a 25% chance of occurring, the word has 2 bits of entropy. Entropy does
not measure how many bits are in a value, but how uncertain you are about the
value. You can think of entropy as the average number of bits you would need
to specify the value if you could use an ideal compression algorithm. Note
that the entropy of a value depends on how much you know. A random 32-bit
word has 32 bits of entropy. Now suppose you happen to know that the value
has exactly 18 bits that are 0 and 14 bits that are 1. There are about 228.8 values
that satisfy these requirements, and the entropy is also limited to 28.8 bits. In
other words, the more you know about a value, the smaller its entropy is.

137

138 Part III ■ Key Negotiation

It is a bit more complicated to compute the entropy for values that have a
nonuniform probability distribution. The most common definition of entropy
for a variable X is

H(X) := −
∑

x

P(X = x) log2 P(X = x)

where P(X = x) is the probability that the variable X takes on the value x.
We won’t use this formula, so you don’t need to remember it. This definition
is what most mathematicians refer to when they talk about entropy. There
are a few other definitions of entropy that mathematicians use as well; which
one they use depends on what they are working on. And don’t confuse our
entropy definition with the entropy that physicists talk about. They use the
word for a concept from thermodynamics that is only tangentially related to
our definition of entropy.

9.1 Real Random

In an ideal world we would use ‘‘real random’’ data. The world is not ideal,
and real random data is extremely hard to find.

Typical computers have a number of sources of entropy. The exact timing
of keystrokes and the exact movements of a mouse are well-known examples.
There has even been research into using the random fluctuations in hard-disk
access time caused by turbulence inside the enclosure [29]. All of these sources
are somewhat suspect because there are situations in which the attacker can
influence or perform measurements on the random source.

It is tempting to be optimistic about the amount of entropy that can be
extracted from various sources. We’ve seen software that will generate 1 or 2
bytes of supposedly random data from the timing of a single keystroke. Cryp-
tographers in general are far more pessimistic about the amount of entropy
in a single keystroke. A good typist can keep the time between consecutive
keystrokes predictable to within a dozen milliseconds. And the keyboard
scan frequency limits the resolution with which keystroke timings can be
measured. The data being typed is not very random either, even if you ask
the user just to hit some keys to generate random data. Furthermore, there
is always a risk that the attacker has additional information about the ‘‘ran-
dom’’ events. A microphone can pick up the sounds of the keyboard, which
helps to determine the timing of keystrokes. Be very careful in estimating how
much entropy you think a particular piece of data contains. We are, after all,
dealing with a very clever and active adversary.

Chapter 9 ■ Generating Randomness 139

There are many physical processes that behave randomly. For example, the
laws of quantum physics force certain behavior to be perfectly random. It
would be very nice if we could measure such random behavior and use it.
Technically, this is certainly possible. However, the attacker has a few lines
of attack on this type of solution. First of all, the attacker can try to influence
the behavior of the quantum particles in question to make them behave
predictably. The attacker can also try to eavesdrop on the measurements we
make; if he gets a copy of our measurements, while the data might still be
random, it won’t have any entropy from the attacker’s point of view. (If
he knows the value, then it has no entropy for him.) Maybe the attacker
can set up a strong RF field in an attempt to bias our detector. There are
even some quantum physics–based attacks that can be contemplated. The
Einstein-Podolsky-Rosen paradox could be used to subvert the randomness
we are trying to measure [11, 19]. Similar comments apply to other sources
of entropy, such as thermal noise of a resistor and tunneling and breakdown
noise of a Zener diode.

Some modern computers have a built-in real random number generator
[63]. This is a significant improvement over a separate real random generator,
as it makes some of the attacks more difficult. The random number generator
is still only accessible to the operating system, so an application has to trust
the operating system to handle the random data in a secure manner.

9.1.1 Problems with Using Real Random Data
Aside from the difficulty of collecting real random data, there are several other
problems with its practical use. First of all, it is not always available. If you
have to wait for keystroke timings, then you cannot get any random data
unless the user is typing. That can be a real problem when your application is a
Web server on a machine with no keyboard connected to it. A related problem
is that the amount of real random data is always limited. If you need a lot of
random data, then you have to wait; something that is unacceptable for many
applications.

A second problem is that real random sources, such as a physical random
number generator, can break. Maybe the generator will become predictable in
some way. Because real random generators are fairly intricate things in the
very noisy environment of a computer, they are much more likely to break
than the traditional parts of the computer. If you rely on the real random
generator directly, then you’re out of luck when it breaks. What’s worse, you
might not know when it breaks.

A third problem is judging how much entropy you can extract from any spe-
cific physical event. Unless you have specially designed dedicated hardware

140 Part III ■ Key Negotiation

for the random generator it is extremely difficult to know how much entropy
you are getting. We’ll discuss this in greater detail later.

9.1.2 Pseudorandom Data
An alternative to using real random data is to use pseudorandom data.
Pseudorandom data is not really random at all. It is generated from a seed
by a deterministic algorithm. If you know the seed, you can predict the
pseudorandom data. Traditional pseudorandom number generators, or prngs,
are not secure against a clever adversary. They are designed to eliminate
statistical artifacts, not to withstand an intelligent attacker. The second volume
of Knuth’s The Art of Computer Programming contains an extensive discussion
of random number generators, but all generators are analyzed for statistical
randomness only [75]. We have to assume that our adversary knows the
algorithm that is used to generate the random data. Given some of the
pseudorandom outputs, is it possible for him to predict some future (or past)
random bits? For many traditional prngs the answer might be yes. For a
proper cryptographic prng the answer is no.

In the context of a cryptographic system, we have more stringent require-
ments. Even if the attacker sees much of the random data generated by the
prng, she should not be able to predict anything about the rest of the output of
the prng. We call such a prng cryptographically strong. As we have no need
for a traditional prng, we will only talk about cryptographically strong prngs.

Forget about the normal random function in your programming library,
because it is almost certainly not a cryptographic prng. Unless the crypto-
graphic strength is explicitly documented, you should never use a library
prng.

9.1.3 Real Random Data and PRNGs
We only use real random data for a single thing: to seed a prng. This
construction resolves some of the problems of using real random data. Once
the prng is seeded, random data is always available. You can keep adding the
real random data that you receive to the prng seed, thereby ensuring that it
never becomes fully predictable even if the seed becomes known.

There is a theoretical argument that real random data is better than pseu-
dorandom data from a prng. In certain cryptographic protocols you can
prove that certain attacks are impossible if you use real random data. The
protocol is unconditionally secure. If you use a prng, the protocol is only
secure as long as the attacker cannot break the prng; the protocol is compu-
tationally secure. This distinction, however, is only of theoretical interest. All

Chapter 9 ■ Generating Randomness 141

cryptographic protocols use computational assumptions for almost everything.
Removing the computational assumption for one particular type of attack is
an insignificant improvement, and generating real random data, which you
need for the unconditional security, is so difficult that you are far more likely
to reduce the system security by trying to use real random data. Any weakness
in the real random generator immediately leads to a loss of security. However,
if you use real random data to seed a prng, you can afford to be far more
conservative in your assumptions about the entropy sources, which makes it
much more likely that you will end up with a secure system in the end.

9.2 Attack Models for a PRNG

The task of generating pseudorandom numbers from a seed is fairly simple.
The problem is how to get a random seed, and how to keep it secret in a
real-world situation [71]. One of the best designs up to now that we know of
is called Yarrow [69], a design we created a few years ago together with John
Kelsey. Yarrow tries to prevent all the known attacks.

At any point in time the prng has an internal state. Requests for random data
are honored by using a cryptographic algorithm to generate pseudorandom
data. This algorithm also updates the internal state to ensure that the next
request does not return the same random data. This process is easy; any hash
function or block cipher can be used for this step.

There are various forms of attack on a prng. There is a straightforward
attack where the attacker attempts to reconstruct the internal state from the
output. This is a classical cryptographic attack, and rather easy to counter
using cryptographic techniques.

Things become more difficult if the attacker is at some point able to acquire
the internal state. For the purposes of this discussion, it is unimportant how
that happens. Maybe there is a flaw in the implementation, or maybe the
computer was just booted for the first time and has had no random seed yet,
or maybe the attacker managed to read the seed file from disk. Bad things
happen, and you have to be able to handle them. In a traditional prng, if
the attacker acquires the internal state, she can follow all the outputs and all
the updates of the internal state. This means that if the prng is ever attacked
successfully, then it can never recover to a secure state.

Another problem arises if the same prng state is used more than once. This
can happen when two or more virtual machines (VMs) are booted from the
same state and read the same seed file from disk.

Recovering a prng whose state has been compromised is difficult, as is
avoiding the re-use of the same state across VMs booted from the same

142 Part III ■ Key Negotiation

instance. We will need some source of entropy from a real random number
generator. To keep this discussion simple, we will assume that we have one or
more sources that provide some amount of entropy (typically in small chunks
that we call events) at unpredictable times.

Even if we mix the small amounts of entropy from an event into the internal
state, this still leaves an avenue of attack. The attacker simply makes frequent
requests for random data from the prng. As long as the total amount of
entropy added between two such requests is limited to, say, 30 bits, the
attacker can simply try all possibilities for the random inputs and recover the
new internal state after the mixing. This would require about 230 tries, which
is quite practical to do.1 The random data generated by the prng provides the
necessary verification when the attacker hits upon the right solution.

The best defense against this particular attack is to pool the incoming events
that contain entropy. You collect entropy until you have enough to mix into
the internal state without the attacker being able to guess the pooled data.
How much is enough? Well, we want the attacker to spend at least 2128 steps
on any attack, so you want to have 128 bits of entropy. But here is the real
problem: making any kind of estimate of the amount of entropy is extremely
difficult, if not impossible. It depends heavily on how much the attacker knows
or can know, but that information is not available to the developers during the
design phase. This is Yarrow’s main problem. It tries to measure the entropy
of a source using an entropy estimator, and such an estimator is impossible to
get right for all situations.

9.3 Fortuna

In practice you are probably best off using a cryptographic prng provided
by a well-accepted cryptographic library. For illustrative purposes, we focus
now on the design of a prng we call Fortuna. Fortuna is an improvement on
Yarrow and is named after the Roman goddess of chance.2 Fortuna solves the
problem of having to define entropy estimators by getting rid of them. The
rest of this chapter is mostly about the details of Fortuna.

There are three parts to Fortuna. The generator takes a fixed-size seed
and generates arbitrary amounts of pseudorandom data. The accumulator
collects and pools entropy from various sources and occasionally reseeds the
generator. Finally, the seed file control ensures that the prng can generate
random data even when the computer has just booted.

1We are being sloppy with our math here. In this instance we should use guessing entropy,
rather than the standard Shannon entropy. For extensive details on entropy measures, see [23].
2We thought about calling it Tyche, after the Greek goddess of chance, but nobody would know
how to pronounce it.

Chapter 9 ■ Generating Randomness 143

9.4 The Generator

The generator is the part that converts a fixed-size state to arbitrarily long
outputs. We’ll use an AES-like block cipher for the generator; feel free to
choose AES (Rijndael), Serpent, or Twofish for this function. The internal state
of the generator consists of a 256-bit block cipher key and a 128-bit counter.

The generator is basically just a block cipher in counter mode. CTR mode
generates a random stream of data, which will be our output. There are a few
refinements.

If a user or application asks for random data, the generator runs its
algorithm and generates pseudorandom data. Now suppose an attacker
manages to compromise the generator’s state after the completion of the
request. It would be nice if this would not compromise the previous results
the generator gave. Therefore, after every request we generate an extra 256
bits of pseudorandom data and use that as the new key for the block cipher.
We can then forget the old key, thereby eliminating any possibility of leaking
information about old requests.

To ensure that the data we generate will be statistically random, we can-
not generate too much data at one time. After all, in purely random data
there can be repeated block values, but the output of counter mode never
contains repeated block values. (See Section 4.8.2 for details.) There are vari-
ous solutions; we could use only half of each ciphertext block, which would
hide most of the statistical deviation. We could use a different building block
called a pseudorandom function, rather than a block cipher, but there are no
well-analyzed and efficient proposals that we know of. The simplest solution
is to limit the number of bytes of random data in a single request, which makes
the statistical deviation much harder to detect.

If we were to generate 264 blocks of output from a single key, we would
expect close to one collision on the block values. A few repeated requests of
this size would quickly show that the output is not perfectly random; it lacks
the expected block collisions. We limit the maximum size of any one request
to 216 blocks (that is, 220 bytes). For an ideal random generator, the probability
of finding a block value collision in 216 output blocks is about 2−97, so the
complete absence of collisions would not be detectable until about 297 requests
had been made. The total workload for the attacker ends up being 2113 steps.
Not quite the 2128 steps that we’re aiming for, but reasonably close.

We know we are being lax here and accepting a (slightly) reduced security
level. There seems to be no good alternative. We don’t have any suitable
cryptographic building blocks that give us a prng with a full 128-bit security
level. We could use SHA-256, but that would be much slower. We’ve found
that people will argue endlessly not to use a good cryptographic prng, and

144 Part III ■ Key Negotiation

speed has always been one of the arguments. Slowing down the prng by a
perceptible factor to get a few bits more security is counterproductive. Too
many people will simply switch to a really bad prng, so the overall system
security will drop.

If we had a block cipher with a 256-bit block size, then the collisions would
not have been an issue at all. This particular attack is not such a great threat.
Not only does the attacker have to perform 2113 steps, but the computer that
is being attacked has to perform 2113 block cipher encryptions. So this attack
depends on the speed of the user’s computer, rather than on the speed of the
attacker’s computer. Most users don’t add huge amounts of extra computing
power just to help an attacker. We don’t like these types of security arguments.
They are more complicated, and if the prng is ever used in an unusual setting,
this argument might no longer apply. Still, given the situation, our solution is
the best compromise we can find.

When we rekey the block cipher at the end of each request, we do not
reset the counter. This is a minor issue, but it avoids problems with short
cycles. Suppose we were to reset the counter every time. If the key value ever
repeats, and all requests are of a fixed size, then the next key value will also
be a repeated key value. We could end up in a short cycle of key values.
This is an unlikely situation, but by not resetting the counter we can avoid
it entirely. As the counter is 128 bits, we will never repeat a counter value
(2128 blocks is beyond the computational capabilities of our computers), and
this automatically breaks any cycles. Furthermore, we use a counter value of
0 to indicate that the generator has not yet been keyed, and therefore cannot
generate any output.

Note that the restriction that limits each request to at most 1 MB of data is
not an inflexible restriction. If you need more than 1 MB of random data, just
do repeated requests. In fact, the implementation could provide an interface
that automatically performs such repeated requests.

The generator by itself is an extremely useful module. Implementations
could make it available as part of the interface, not just as a component, of
Fortuna. Take a program that performs a Monte Carlo simulation.3 You really
want the simulation to be random, but you also want to be able to repeat
the exact same computation, if only for debugging and verification purposes.
A good solution is to call the operating system’s random generator once at
the start of the program to get a random seed. This seed can be logged as
part of the simulator output, and from this seed our generator can generate
all the random data needed for the simulation. Knowing the original seed of
the generator also allows all the computations to be verified by running the
program again using the same input data and seed. And for debugging, the

3A Monte Carlo simulation is a simulation that is driven by random choices.

Chapter 9 ■ Generating Randomness 145

same simulation can be run again and again, and it will behave exactly the
same every time, as long as the starting seed is kept constant.

We can now specify the operations of the generator in detail.

9.4.1 Initialization
This is rather simple. We set the key and the counter to zero to indicate that
the generator has not been seeded yet.

function InitializeGenerator
output: G Generator state.

Set the key K and counter C to zero.
(K, C) ← (0, 0)
Package up the state.
G ← (K, C)
return G

9.4.2 Reseed
The reseed operation updates the state with an arbitrary input string. At this
level we do not care what this input string contains. To ensure a thorough
mixing of the input with the existing key, we use a hash function.

function Reseed
input: G Generator state; modified by this function.

s New or additional seed.

Compute the new key using a hash function.
K ← SHAd-256(K ‖ s)
Increment the counter to make it nonzero and mark the generator as seeded.

Throughout this generator, C is a 16-byte value treated as an integer
using the LSByte first convention.

C ← C + 1

The counter C is used here as an integer. Later it will be used as a
plaintext block. To convert between the two we use the least-significant-byte-
first convention. The plaintext block is a block of 16 bytes p0, . . . , p15 that
corresponds to the integer value

15∑

i=0

pi28i

By using this convention throughout, we can treat C both as a 16-byte string
and as an integer.

146 Part III ■ Key Negotiation

9.4.3 Generate Blocks
This function generates a number of blocks of random output. This is an
internal function used only by the generator. Any entity outside the prng
should not be able to call this function.

function GenerateBlocks
input: G Generator state; modified by this function.

k Number of blocks to generate.
output: r Pseudorandom string of 16k bytes.

assert C
= 0
Start with the empty string.
r ← ε

Append the necessary blocks.
for i = 1, . . . , k do

r ← r ‖ E(K, C)
C ← C + 1

od
return r

Of course, the E(K, C) function is the block cipher encryption function with
key K and plaintext C. The GenerateBlocks function first checks that C is not
zero, as that is the indication that this generator has never been seeded. The
symbol ε denotes the empty string. The loop starts with an empty string in r
and appends each newly computed block to r to build the output value.

9.4.4 Generate Random Data
This function generates random data at the request of the user of the generator.
It allows for output of up to 220 bytes and ensures that the generator forgets
any information about the result it generated.

function PseudoRandomData
input: G Generator state; modified by this function.

n Number of bytes of random data to generate.
output: r Pseudorandom string of n bytes.

Limit the output length to reduce the statistical deviation from perfectly random
outputs. Also ensure that the length is not negative.

assert 0 ≤ n ≤ 220

Compute the output.
r ← first-n-bytes(GenerateBlocks(G, �n/16))
Switch to a new key to avoid later compromises of this output.
K ← GenerateBlocks(G, 2)
return r

Chapter 9 ■ Generating Randomness 147

The output is generated by a call to GenerateBlocks, and the only change
is that the result is truncated to the correct number of bytes. (The �·	 operator
is the round-upwards operator.) We then generate two more blocks to get a
new key. Once the old K has been forgotten, there is no way to recompute
the result r. As long as PseudoRandomData does not keep a copy of r, or
forget to wipe the memory r was stored in, the generator has no way of leaking
any data about r once the function completes. This is exactly why any future
compromise of the generator cannot endanger the secrecy of earlier outputs. It
does endanger the secrecy of future outputs, a problem that the accumulator
will address.

The function PseudoRandomData is limited in the amount of data it can
return. One can specify a wrapper around this that can return larger random
strings by repeated calls to PseudoRandomData. Note that you should not
increase the maximum output size per call, as that increases the statistical
deviation from pure random. Doing repeated calls to PseudoRandomData is
quite efficient. The only real overhead is that for every 1 MB of random data
produced, you have to generate 32 extra random bytes (for the new key) and
run the key schedule of the block cipher again. This overhead is insignificant
for all of the block ciphers we suggest.

9.4.5 Generator Speed
The generator for Fortuna that we just described is a cryptographically strong
prng in the sense that it converts a seed into an arbitrarily long pseudorandom
output. It is about as fast as the underlying block cipher; on a PC-type CPU it
should run in less than 20 clock cycles per generated byte for large requests.
Fortuna can be used as a drop-in replacement for most prng library functions.

9.5 Accumulator

The accumulator collects real random data from various sources and uses it to
reseed the generator.

9.5.1 Entropy Sources
We assume there are several sources of entropy in the environment. Each
source can produce events containing entropy at any point in time. It does not
matter exactly what you use as your sources, as long as there is at least one
source that generates data that is unpredictable to the attacker. As you cannot
know how the attacker will attack, the best bet is to turn anything that looks like
unpredictable data into a random source. Keystrokes and mouse movements
make reasonable sources. In addition, you should add as many timing sources

148 Part III ■ Key Negotiation

as practical. You could use accurate timing of keystrokes, mouse movements
and clicks, and responses from the disk drives and printers, preferably all at
the same time. Again, it is not a problem if the attacker can predict or copy the
data from some of the sources, as long as she cannot do it for all of them.

Implementing sources can be a lot of work. The sources typically have to be
built into the various hardware drivers of the operating system. This is almost
impossible to do at the user level.

We identify each source by a unique source number in the range 0 . . . 255.
Implementors can choose whether to allocate the source numbers statically
or dynamically. The data in each event is a short sequence of bytes. Sources
should only include the unpredictable data in each event. For example, timing
information can be represented by the two or four least significant bytes of an
accurate timer. There is no point including the day, month, and year. It is safe
to assume that the attacker knows those.

We will be concatenating various events from different sources. To ensure
that a string constructed from such a concatenation uniquely encodes the
events, we have to make sure the string is parsable. Each event is encoded
as three or more bytes of data. The first byte contains the random source
number. The second byte contains the number of additional bytes of data. The
subsequent bytes contain whatever data the source provided.

Of course, the attacker will know the events generated by some of the
sources. To model this, we assume that some of the sources are completely
under the attacker’s control. The attacker chooses which events these sources
generate at which times. And like any other user, the attacker can ask for
random data from the prng at any point in time.

9.5.2 Pools
To reseed the generator, we need to pool events in a pool large enough that
the attacker can no longer enumerate the possible values for the events in the
pool. A reseed with a ‘‘large enough’’ pool of random events destroys the
information the attacker might have had about the generator state. Unfortu-
nately, we don’t know how many events to collect in a pool before using it
to reseed the generator. This is the problem Yarrow tried to solve by using
entropy estimators and various heuristic rules. Fortuna solves it in a much
better way.

There are 32 pools: P0, P1, . . . , P31. Each pool conceptually contains a string
of bytes of unbounded length. In practice, the only way that string is used
is as the input to a hash function. Implementations do not need to store the
unbounded string, but can compute the hash of the string incrementally as it
is assembled in the pool.

Each source distributes its random events over the pools in a cyclical
fashion. This ensures that the entropy from each source is distributed more or

Chapter 9 ■ Generating Randomness 149

less evenly over the pools. Each random event is appended to the string in the
pool in question.

We reseed the generator every time pool P0 is long enough. Reseeds are
numbered 1, 2, 3, Depending on the reseed number r, one or more pools
are included in the reseed. Pool Pi is included if 2i is a divisor of r. Thus, P0 is
used every reseed, P1 every other reseed, P2 every fourth reseed, etc. After a
pool is used in a reseed, it is reset to the empty string.

This system automatically adapts to the situation. If the attacker knows very
little about the random sources, she will not be able to predict P0 at the next
reseed. But the attacker might know a lot more about the random sources, or
she might be (falsely) generating a lot of the events. In that case, she probably
knows enough of P0 that she can reconstruct the new generator state from the
old generator state and the generator outputs. But when P1 is used in a reseed,
it contains twice as much data that is unpredictable to her; and P2 will contain
four times as much. Irrespective of how many fake random events the attacker
generates, or how many of the events she knows, as long as there is at least
one source of random events she can’t predict, there will always be a pool that
collects enough entropy to defeat her.

The speed at which the system recovers from a compromised state depends
on the rate at which entropy (with respect to the attacker) flows into the pools.
If we assume this is a fixed rate ρ, then after t seconds we have in total ρt
bits of entropy. Each pool receives about ρt/32 bits in this time period. The
attacker can no longer keep track of the state if the generator is reseeded with a
pool with more than 128 bits of entropy in it. There are two cases. If P0 collects
128 bits of entropy before the next reseed operation, then we have recovered
from the compromise. How fast this happens depends on how large we let
P0 grow before we reseed. The second case is when P0 is reseeding too fast,
due to random events known to (or generated by) the attacker. Let t be the
time between reseeds. Then pool Pi collects 2iρt/32 bits of entropy between
reseeds and is used in a reseed every 2it seconds. The recovery from the
compromise happens the first time we reseed with pool Pi where 128 ≤
2iρt/32 < 256. (The upper bound derives from the fact that otherwise pool Pi−1

would contain 128 bits of entropy between reseeds.) This inequality gives us

2iρt
32

< 256

and thus

2it <
8192

ρ

In other words, the time between recovery points (2it) is bounded by the time
it takes to collect 213 bits of entropy (8192/ρ). The number 213 seems a bit
large, but it can be explained in the following way. We need at least 128 = 27

bits to recover from a compromise. We might be unlucky if the system reseeds

150 Part III ■ Key Negotiation

just before we have collected 27 bits in a particular pool, and then we have to
use the next pool, which will collect close to 28 bits before the reseed. Finally,
we divide our data over 32 pools, which accounts for another factor of 25.

This is a very good result. This solution is within a factor of 64 of an ideal
solution (it needs at most 64 times as much randomness as an ideal solution
would need). This is a constant factor, and it ensures that we can never do
terribly badly and will always recover eventually. Furthermore, we do not
need to know how much entropy our events have or how much the attacker
knows. That is the real advantage Fortuna has over Yarrow. The impossible-to-
construct entropy estimators are gone for good. Everything is fully automatic;
if there is a good flow of random data, the prng will recover quickly. If there
is only a trickle of random data, it takes a long time to recover.

So far we’ve ignored the fact that we only have 32 pools, and that maybe
even pool P31 does not collect enough randomness between reseeds to recover
from a compromise. This could happen if the attacker injected so many
random events that 232 reseeds would occur before the random sources that
the attacker has no knowledge about have generated 213 bits of entropy. This
is unlikely, but to stop the attacker from even trying, we will limit the speed
of the reseeds. A reseed will only be performed if the previous reseed was
more than 100 ms ago. This limits the reseed rate to 10 reseeds per second,
so it will take more than 13 years before P32 would ever have been used, had
it existed. Given that the economic and technical lifetime of most computer
equipment is considerably less than ten years, it seems a reasonable solution
to limit ourselves to 32 pools.

9.5.3 Implementation Considerations
There are a couple of implementation considerations in the design of the
accumulator.

9.5.3.1 Distribution of Events Over Pools

The incoming events have to be distributed over the pools. The simplest
solution would be for the accumulator to take on that role. However, this is
dangerous. There will be some kind of function call to pass an event to the
accumulator. It is quite possible that the attacker could make arbitrary calls to
this function, too. The attacker could make extra calls to this function every
time a ‘‘real’’ event was generated, thereby influencing the pool that the next
‘‘real’’ event would go to. If the attacker manages to get all ‘‘real’’ events into
pool P0, the whole multi-pool system is ineffective, and the single-pool attacks
apply. If the attacker gets all ‘‘real’’ events into P31, they essentially never
get used.

Chapter 9 ■ Generating Randomness 151

Our solution is to let every event generator pass the proper pool number
with each event. This requires the attacker to have access to the memory
of the program that generates the event if she wants to influence the pool
choice. If the attacker has that much access, then the entire source is probably
compromised as well.

The accumulator could check that each source routes its events to the pools
in the correct order. It is a good idea for a function to check that its inputs are
properly formed, so this would be a good idea in principle. But in this situation,
it is not always clear what the accumulator should do if the verification fails. If
the whole prng runs as a user process, the prng could throw a fatal error and
exit the program. That would deprive the system of the prng just because a
single source misbehaved. If the prng is part of the operating system kernel, it
is much harder. Let’s assume a particular driver generates random events, but
the driver cannot keep track of a simple 5-bit cyclical counter. What should
the accumulator do? Return an error code? Chances are that a programmer
who makes such simple mistakes doesn’t check the return codes. Should the
accumulator halt the kernel? A bit drastic, and it crashes the whole machine
because of a single faulty driver. The best idea we’ve come up with is to
penalize the driver in CPU time. If the verification fails, the accumulator can
delay the driver in question by a second or so.

This idea is not terribly useful, because the reason we let the caller determine
the pool number is that we assume the attacker might make false calls to the
accumulator with fake events. If this happens and the accumulator checks the
pool ordering, the real event generator will be penalized for the misbehavior
of the attacker. Our conclusion: the accumulator should not check the pool
ordering, because there isn’t anything useful the accumulator can do if it detects
that something is wrong. Each random source is responsible for distributing
its events in cyclical order over the pools. If a random source screws up, we
might lose the entropy from that source (which we expect), but no other harm
will be done.

9.5.3.2 Running Time of Event Passing

We want to limit the amount of computation necessary when an event is
passed to the accumulator. Many of the events are timing events, and they
are generated by real-time drivers. These drivers do not want to call an
accumulator if once in a while the call takes a long time to complete.

There is a certain minimum number of computations that we will need to
do. We have to append the event data to the selected pool. Of course, we are
not going to store the entire pool string in memory, because the length of a
pool string is potentially unbounded. Recall that popular hash functions are
iterative? For each pool we will have a short buffer and compute a partial hash

152 Part III ■ Key Negotiation

as soon as that buffer is full. This is the minimum amount of computation
required per event.

We do not want to do the whole reseeding operation, which uses one or
more pools to reseed the generator. This takes an order of magnitude more
time than just adding an event to a pool. Instead, this work will be delayed
until the next user asks for random data, when it will be performed before the
random data is generated. This shifts some of the computational burden from
the event generators to the users of random data, which is reasonable since
they are also the ones who are benefiting from the prng service. After all, most
event generators are not benefiting from the random data they help to produce.

To allow the reseed to be done just before the request for random data is
processed, we must encapsulate the generator. In other words, the genera-
tor will be hidden so that it cannot be called directly. The accumulator will
provide a RandomData function with the same interface as PseudoRandom-
Data. This avoids problems with certain users calling the generator directly
and bypassing the reseeding process that we worked so hard to perfect. Of
course, users can still create their own instance of the generator for their
own use.

A typical hash function, like SHA-256, and hence SHAd-256, processes
message inputs in fixed-size blocks. If we process each block of the pool string
as soon as it is complete, then each event will lead to at most a single hash block
computation. However, this also has a disadvantage. Modern computers use
a hierarchy of caches to keep the CPU busy. One of the effects of the caches is
that it is more efficient to keep the CPU working on the same thing for a while.
If you process a single hash code block, then the CPU must read the hash
function code into the fastest cache before it can be run. If you process several
blocks in sequence, then the first block forces the code into the fastest cache,
and the subsequent blocks take advantage of this. In general, performance
on modern CPUs can be significantly increased by keeping the CPU working
within a small loop and not letting it switch between different pieces of code
all the time.

Considering the above, one option is to increase the buffer size per pool and
collect more data in each buffer before computing the hash. The advantage is
a reduction in the total amount of CPU time needed. The disadvantage is that
the maximum time it takes to add a new event to a pool increases. This is an
implementation trade-off that we cannot resolve here. It depends too much on
the details of the environment.

9.5.4 Initialization
Initialization is, as always, a simple function. So far we’ve only talked about
the generator and the accumulator, but the functions we are about to define

Chapter 9 ■ Generating Randomness 153

are part of the external interface of Fortuna. Their names reflect the fact that
they operate on the whole prng.

function InitializePRNG
output: R prng state.

Set the 32 pools to the empty string.
for i = 0, . . . , 31 do

Pi ← ε

od
Set the reseed counter to zero.
ReseedCnt ← 0
And initialize the generator.
G ← InitializeGenerator()
Package up the state.
R ← (G, ReseedCnt, P0, . . . , P31)
return R

9.5.5 Getting Random Data
This is not quite a simple wrapper around the generator component of the
prng, because we have to handle the reseeds here.

function RandomData
input: R prng state, modified by this function.

n Number of bytes of random data to generate.
output: r Pseudorandom string of bytes.

if length(P0) ≥ MinPoolSize ∧ last reseed > 100 ms ago then
We need to reseed.
ReseedCnt ← ReseedCnt + 1
Append the hashes of all the pools we will use.
s ← ε

for i ∈ 0, . . . , 31 do
if 2i | ReseedCnt then

s ← s ‖ SHAd-256(Pi)
Pi ← ε

fi
od
Got the data, now do the reseed.
Reseed(G, s)

fi

154 Part III ■ Key Negotiation

if ReseedCnt = 0 then
Generate error, prng not seeded yet

else
Reseeds (if needed) are done. Let the generator that is part of R do the work.
return PseudoRandomData(G, n)

fi

This function starts by checking the size of pool P0 against the parameter
MinPoolSize to see if it should do a reseed. You can use a very optimistic
estimate of how large the pool size has to be before it can contain 128 bits of
entropy. Assuming that each event contains 8 bits of entropy and takes 4 bytes
in the pool (this corresponds to 2 bytes of event data), a suitable value for
MinPoolSize would be 64 bytes. It doesn’t matter much, although choosing
a value smaller than 32 seems inadvisable. Choosing a much larger value is
not good, either, because that will delay the reseed even if there are very good
random sources available.

The next step is to increment the reseed count. The count was initialized to
0, so the very first reseed uses the value 1. This automatically ensures that the
first reseed uses only P0, which is what we want.

The loop appends the hashes of the pools. We could also have appended
the pools themselves, but then every implementation would have to store
entire pool strings, not just the running hash-computation of each pool. The
notation 2i | ReseedCnt is a divisor test. It is true if 2i is a divisor of the value
ReseedCnt. Once an i value fails this test, all tests of the subsequent loop
iterations will also fail, which suggests an optimization.

9.5.6 Add an Event
Random sources call this routine when they have another random event. Note
that the random sources are each uniquely identified by a source number.
We will not specify how to allocate the source numbers because the solution
depends on the local situation.

function AddRandomEvent
input: R prng state, modified by this function.

s Source number in range 0, . . . , 255.
i Pool number in range 0, . . . , 31. Each source must distribute its

events over all the pools in a round-robin fashion.
e Event data. String of bytes; length in range 1, . . . , 32.

Check the parameters first.
assert 1 ≤ length(e) ≤ 32 ∧ 0 ≤ s ≤ 255 ∧ 0 ≤ i ≤ 31
Add the data to the pool.
Pi ← Pi ‖ s ‖ length(e) ‖ e

Chapter 9 ■ Generating Randomness 155

The event is encoded in 2 + length(e) bytes, with both s and length(e) being
encoded as a single byte. This concatenation is then appended to the pool.
Note that our specifications just append data to the pool, but do not mention
any hash computation. We only specify the hashing of the pool at the point in
time where we use it. A real implementation should compute the hashes on
the fly. That is functionally equivalent and easier to implement, but specifying
it directly would be far more complicated.

We have limited the length of the event data to 32 bytes. Larger events
are fairly useless; random sources should not pass large amounts of data, but
rather, only those few bytes that contain unpredictable random data. If a source
has a large amount of data that contains some entropy spread throughout it,
the source should hash the data first. The AddRandomEvent function should
always return quickly. This is especially important because many sources—by
their very nature—perform real-time services. These sources cannot spend
too much time calling AddRandomEvent. Even if a source produces small
events, it should not have to wait on other callers whose events are large.
Most implementations will need to serialize the calls to AddRandomEvent
by using a mutex of some sort to ensure that only one event is being added at
the same time.4

Some random sources might not have the time to call AddRandomEvent.
In this case, it might be necessary to store the events in a buffer and have
a separate process pick the events from the buffer and feed them to the
accumulator.

An alternative architecture allows the sources to simply pass the events to
the accumulator process, and has a separate thread in the accumulator perform
all the hash computations. This is a more complex design, but it does have
advantages for the entropy sources. The choice depends very much on the
actual situation.

9.6 Seed File Management

Our prng so far will collect entropy and generate random data after the first
reseed. However, if we reboot a machine we have to wait for the random
sources to produce enough events to trigger the first reseed before any random
data is available. In addition, there is no guarantee that the state after the first
reseed is, in fact, unpredictable to the attacker.

The solution is to use a seed file. The prng keeps a separate file full of
entropy, called the seed file. This seed is not made available to anyone else.
After a reboot, the prng reads the seed file and uses it as entropy to get into an

4In a multithreaded environment, you should always be very careful to ensure that different
threads do not interfere with each other.

156 Part III ■ Key Negotiation

unknown state. Of course, once the seed file has been used in this manner, it
needs to be rewritten with new data.

We will describe seed file management, first under the assumption that
the file system supports atomic operations; later we will discuss the issues
involved with implementing seed file management on real systems.

9.6.1 Write Seed File
The first thing to do is generate a seed file. This is done with a simple function.

function WriteSeedFile
input: R prng state, modified by this function.

f File to write to.
write(f , RandomData(R, 64))

This function simply generates 64 bytes of random data and writes it to the
file. This is slightly more data than absolutely needed, but there is little reason
to be parsimonious with the bytes here.

9.6.2 Update Seed File
Obviously we need to be able to read a seed file, too. For reasons explained
below, we always update the seed file in the same operation.

function UpdateSeedFile
input: R prng state, modified by this function.

f File to be updated.
s ← read(f)
assert length(s) = 64
Reseed(G, s)
write(f , RandomData(R, 64))

This function reads the seed file, checks its length, and reseeds the generator.
It then rewrites the seed file with new random data.

This routine must ensure that no other use is made of the prng between the
reseed it causes and the writing of the new data to the seed file. Here is the
problem: after a reboot, the seed file is read by this function, and the data is
used in a reseed. Suppose the attacker asks for random data before the seed
file has been updated. As soon as this random data is returned, but before the
seed file is updated, the attacker resets the machine. At the next reboot, the
same seed file data will be read and used to reseed the generator. This time,
an innocent user asks for random data before the seed file has been rewritten.
He will get the same random data that the attacker got earlier. This violates

Chapter 9 ■ Generating Randomness 157

the secrecy of the random data. As we often use random data to generate
cryptographic keys, this is a rather serious problem.

The implementation should ensure that the seed file is kept secret. Also, all
updates to the seed file must be atomic (see Section 9.6.5).

9.6.3 When to Read and Write the Seed File
When the computer is rebooted, the prng does not have any entropy to
generate random data from. This is why the seed file is there. Thus, the seed
file should be read and updated after every reboot.

As the computer runs, it collects entropy from various sources. We eventu-
ally want this entropy to affect the seed file as well. One obvious solution is to
rewrite the seed file just as the machine is shutting down. As some computers
will never be shut down in an orderly fashion, the prng should also rewrite
the seed file at regular intervals. We won’t spell out the details here, as they are
quite uninteresting and often depend on the platform. It is important to ensure
that the seed file is updated regularly from the prng after it has collected a fair
amount of entropy. A reasonable solution would be to rewrite the seed file at
every shutdown and every 10 minutes or so.

9.6.4 Backups and Virtual Machines
Trying to do the reseeding correctly opens a can of worms. We cannot allow
the same state of the prng to be repeated twice. We use the file system to store
a seed file to prevent this. But most file systems are not designed to avoid
repeating the same state twice, and this causes us a lot of trouble.

First of all, there are backups. If you make a backup of the entire file system
and then reboot the computer, the prng will be reseeded from the seed file.
If you later restore the entire file system from the backup and reboot the
computer, the prng will be reseeded from the very same seed file. In other
words, until the accumulator has collected enough entropy, the prng will
produce the same output after the two reboots. This is a serious problem, as
an attacker can do this to retrieve the random data that another user got from
the prng.

There is no direct defense against this attack. If the backup system is capable
of recreating the entire permanent state of the computer, there is nothing we
can do to prevent the prng state from repeating itself. Ideally, we would fix
the backup system to be prng-aware, but that is probably too much to ask.
Hashing the seed file together with the current time would solve the problem
as long as the attacker does not reset the clock to the same time. The same
solution could be used if the backup system were guaranteed to keep a counter
of how many restore-operations it had done. We could hash the seed file with
the restore counter.

158 Part III ■ Key Negotiation

Virtual machines pose a similar problem to backups. If a VM’s state is saved
and then restarted twice, both instances would begin with the same prng state.
Fortunately, some of the same solutions for backups also apply to multiple
VM instances starting from the same state.

The issues with backups and virtual machines deserve further study, but
because they are highly platform-dependent, we do not give a general treat-
ment here.

9.6.5 Atomicity of File System Updates
Another important problem associated with the seed file is the atomicity of file
system updates. On most operating systems, if you write a seed file, all that
happens is that a few memory buffers get updated. The data is not actually
written to disk until much later. Some file systems have a ‘‘flush’’ command
that purports to write all data to disk. However, this can be an extremely slow
operation, and we have seen cases where the hardware lied to the software
and simply refused to implement the ‘‘flush’’ command properly.

Whenever we reseed from our seed file, we must update it before allowing
any user to ask for random data. In other words, we must be absolutely sure
that the data has been modified on the magnetic media. Things become even
more complicated when you consider that many file systems treat file data
and file administration information separately. So rewriting the seed file might
make the file administration data temporarily inconsistent. If the power fails
during that time, we could get a corrupted seed file or even lose the seed file
entirely—not a good idea for a security system.

Some file systems use a journal to solve some of these problems. This is
a technique originally developed for large database systems. The journal is
a sequential list of all the updates that have been done to the file system.
When properly used, a journal can ensure that updates are always consistent.
Such a file system is always preferable from a reliability point of view.
Unfortunately, some of the very common file systems only apply the journal
to the administrative information, which isn’t quite good enough for our
goals.

As long as the hardware and operating system do not support fully atomic
and permanent file updates, we cannot create a perfect seed file solution. You
will need to investigate the particular platform that you work on and do the
best you can to reliably update the seed file.

9.6.6 First Boot
When we start the prng for the very first time, there is no seed file to use for
a reseed. Take, for example, a new PC that had its OS installed in the factory.
The OS is now generating some administrative cryptographic keys for the

Chapter 9 ■ Generating Randomness 159

installation, for which it needs the prng. For ease of production, all machines
are identical and loaded with identical data. There is no initial seed file, so we
cannot use that. We could wait for enough random events to trigger one or
more reseeds, but that takes a long time, and we’d never know when we had
collected enough entropy to be able to generate good cryptographic keys.

A good idea would be for the installation procedure to generate a random
seed file for the prng during the configuration. It could, for example, use a
prng on a separate computer to generate a new seed file for each machine.
Or maybe the installation software could ask the tester to wiggle the mouse
to collect some initial entropy. The choice of solution depends on the details
of the environment, but somehow initial entropy has to be provided. Not
providing initial entropy is not an option. The entropy accumulator can take
quite a while to seed the prng properly, and it is quite likely that some very
important cryptographic keys will be generated by the prng shortly after the
installation of the machine.

Keep in mind that the Fortuna accumulator will seed the generator as soon
as it might have enough entropy to be really random. Depending on how
much entropy the sources actually deliver—something that Fortuna has no
knowledge about—it could take quite a while before enough entropy has
been gathered to properly reseed the generator. Having an outside source of
randomness to create the first seed file is probably the best solution.

9.7 Choosing Random Elements

Our prng produces sequences of random bytes. Sometimes this is exactly what
you need. In other situations you try to pick a random element from a set. This
requires some care to do right.

Whenever we choose a random element, we implicitly assume that the
element is chosen uniformly at random from the specified set (unless we specify
another distribution). This means that each element should have exactly the
same probability of being chosen.5 This is harder than one might think.

Let n be the number of elements in the set we are choosing from. We will
only discuss how to choose a random element from the set 0, 1, . . . , n − 1. Once
you can do this, you can choose elements from any set of size n.

If n = 0, there are no elements to choose from, so this is a simple error. If
n = 1 you have no choice; again a simple case. If n = 2k, then you just get k
bits of random data from the prng and interpret them as a number in the
range 0, . . . , n − 1. This number is uniformly random. (You might have to get

5If we are designing for a 128-bit security level, we could afford a deviation from the uniform
probability of 2−128, but it is easier to do it perfectly.

160 Part III ■ Key Negotiation

a whole number of bytes from the prng and throw away a few bits of the last
byte until you’re left with k bits, but this is easy.)

What if n is not a power of two? Well, some programs choose a random
32-bit integer and take it modulo n. But that algorithm introduces a bias in the
resulting probability distribution. Let’s take n = 5 as an example and define
m := �232/5�. If we take a uniformly random 32-bit number and reduce it
modulo 5, then the results 1, 2, 3, and 4 each occur with a probability of m/232,
while the result 0 occurs with a probability of (m + 1)/232. The deviation in
probability is small, but could very well be significant. It would certainly be
easy to detect the deviation within the 2128 steps we allow the attacker.

The proper way to select a random number in an arbitrary range is to use a
trial-and-error approach. To generate a random value in the range 0, . . . , 4, we
first generate a random value in the range 0, . . . , 7, which we can do since 8 is
a power of 2. If the result is 5 or larger, we throw it away and choose a new
random number in the range 0, . . . , 7. We keep doing this until the result is
in the desired range. In other words, we generate a random number with the
right number of bits in it and throw away all the improper ones.

Here is a more formal specification for how to choose a random number in
the range 0, . . . , n − 1 for n ≥ 2.

1. Let k be the smallest integer such that 2k ≥ n.

2. Use the prng to generate a k-bit random number K. This number will be
in the range 0, . . . , 2k − 1. You might have to generate a whole number of
bytes and throw away part of the last byte, but that’s easy.

3. If K ≥ n go back to step 2.

4. The number K is the result.

This can be a bit of a wasteful process. In the worst case, we throw away half
our attempts on average. Here is an improvement. As 232 − 1 is a multiple of
5, we could choose a random number in the range 0, . . . , 232 − 2 and take the
result modulo 5 for our answer. To choose a value in the range 0, . . . , 232 − 2, we
use the ‘‘inefficient’’ try-and-throw-away algorithm, but now the probability
of having to throw the intermediate result away is very low.

The general formulation is to choose a convenient k such that 2k ≥ n. Define
q := �2k/n�. First choose a random number r in the range 0, . . . , nq − 1 using
the try-and-throw-away rules. Once a suitable r has been generated, the final
result is given by (r mod n).

We don’t know of any way to generate uniformly random numbers on sizes
that are not a power of two without having to throw away some random
bits now and again. That is not a problem. Given a decent prng, there is no
shortage of random bits.

Chapter 9 ■ Generating Randomness 161

9.8 Exercises

Exercise 9.1 Investigate the random number generators built into three of
your favorite programming languages. Would you use these random number
generators for cryptographic purposes?

Exercise 9.2 Using an existing cryptography library, write a short program
that generates a 256-bit AES key using a cryptographic prng.

Exercise 9.3 For your platform, language, and cryptography library of
choice, summarize how the cryptographic prng works internally. Consider
issues including but not limited to the following: how the entropy is collected,
how reseeding occurs, and how the prng handles reboots.

Exercise 9.4 What are the advantages of using a prng over an rng? What
are the advantages of using an rng over a prng?

Exercise 9.5 Using a cryptographic prng that outputs a stream of bits,
implement a random number generator that outputs random integers in the
set 0, 1, . . . , n − 1 for any n between 1 and 232.

Exercise 9.6 Implement a naive approach for generating random numbers
in the set 0, 1, . . . , 191. For this naive approach, generate a random 8-bit
value, interpret that value as an integer, and reduce that value modulo
192. Experimentally generate a large number of random numbers in the set
0, 1, . . . , 191 and report on the distribution of results.

Exercise 9.7 Find a new product or system that uses (or should use) a
cryptographic prng. This might be the same product or system you analyzed
for Exercise 1.8. Conduct a security review of that product or system as
described in Section 1.12, this time focusing on the issues surrounding the use
of random numbers.

C H A P T E R

10

Primes

The following two chapters explain public-key cryptographic systems. This
requires some mathematics to get started. It is always tempting to dispense
with the understanding and only present the formulas and equations, but we
feel very strongly that this is a dangerous thing to do. To use a tool, you should
understand the properties of that tool. This is easy with something like a hash
function. We have an ‘‘ideal’’ model of a hash function, and we desire the
actual hash function to behave like the ideal model. This is not so easy to do
with public-key systems because there are no ‘‘ideal’’ models to work with. In
practice, you have to deal with the mathematical properties of the public-key
systems, and to do that safely you must understand these properties. There is
no shortcut here; you must understand the mathematics. Fortunately, the only
background knowledge required is high school math.

This chapter is about prime numbers. Prime numbers play an important
role in mathematics, but we are interested in them because some of the most
important public-key crypto systems are based on prime numbers.

10.1 Divisibility and Primes

A number a is a divisor of b (notation a | b, pronounced ‘‘a divides b’’) if you
can divide b by a without leaving a remainder. For example, 7 is a divisor
of 35 so we write 7 | 35. We call a number a prime number if it has exactly
two positive divisors, namely 1 and itself. For example, 13 is a prime; the two

163

164 Part III ■ Key Negotiation

divisors are 1 and 13. The first few primes are easy to find: 2, 3, 5, 7, 11, 13,
Any integer greater than 1 that is not prime is called a composite. The number
1 is neither prime nor composite.

We will use the proper mathematical notation and terminology in the
chapters ahead. This will make it much easier to read other texts on this
subject. The notation might look difficult and complicated at first, but this part
of mathematics is really easy.

Here is a simple lemma about divisibility:

Lemma 1 If a | b and b | c then a | c.

Proof. If a | b, then there is an integer s such that as = b. (After all, b is divisible
by a so it must be a multiple of a.) And if b | c then there is an integer t such that
bt = c. But this implies that c = bt = (as)t = a(st) and therefore a is a divisor of
c. (To follow this argument, just verify that each of the equal signs is correct.
The conclusion is that the first item c must be equal to the last item a(st).) �

The lemma is a statement of fact. The proof argues why the lemma is true.
The little square box signals the end of the proof. Mathematicians love to use
lots of symbols.1 This is a very simple lemma, and the proof should be easy to
follow, as long as you remember what the notation a | b means.

Prime numbers have been studied by mathematicians throughout the ages.
Even today, if you want to generate all primes below one million, you should
use an algorithm developed just over 2000 years ago by Eratosthenes, a friend
of Archimedes. (Eratosthenes was also the first person to accurately measure
the diameter of the earth. A mere 1700 years later Columbus allegedly used a
much smaller—and wrong—estimate for the size of the earth when he planned
to sail to India by going due west.) Euclid, another great Greek mathematician,
gave a beautiful proof that showed there are an infinite number of primes.
This is such a beautiful proof that we’ll include it here. Reading through it will
help you reacquaint yourself with the math.

Before we start with the real proof we will give a simple lemma.

Lemma 2 Let n be a positive number greater than 1. Let d be the smallest divisor of
n that is greater than 1. Then d is prime.

Proof. First of all, we have to check that d is well defined. (If there is a number
n that has no smallest divisor, then d is not properly defined and the lemma is
nonsensical.) We know that n is a divisor of n, and n > 1, so there is at least
one divisor of n that is greater than 1. Therefore, there must also be a smallest
divisor greater than 1.

1Using symbols has advantages and disadvantages. We’ll use whatever we think is most
appropriate for this book.

Chapter 10 ■ Primes 165

To prove that d is prime, we use a standard mathematician’s trick called
reductio ad absurdum or proof by contradiction. To prove a statement X, we
first assume that X is not true and show that this assumption leads to a
contradiction. If assuming that X is not true leads to a contradiction, then
obviously X must be true.

In our case, we will assume that d is not a prime. If d is not a prime, it
has a divisor e such that 1 < e < d. But we know from Lemma 1 that if e | d
and d | n then e | n, so e is a divisor of n and is smaller than d. But this is a
contradiction, because d was defined as the smallest divisor of n. Because a con-
tradiction cannot be true, our assumption must be false, and therefore d must
be prime. �

Don’t worry if you find this type of proof a bit confusing; it takes some
getting used to.

We can now prove that there are an infinite number of primes.

Theorem 3 (Euclid) There are an infinite number of primes.

Proof. We again assume the opposite of what we try to prove. Here we assume
that the number of primes is finite, and therefore that the list of primes is finite.
Let’s call them p1, p2, p3, . . . , pk, where k is the number of primes. We define the
number n := p1p2p3 · · · pk + 1, which is the product of all our primes plus one.

Consider the smallest divisor greater than 1 of n; we’ll call it d again. Now
d is prime (by Lemma 2) and d | n. But none of the primes in our finite list of
primes is a divisor of n. After all, they are all divisors of n − 1, so if you divide
n by one of the pi’s in the list, you are always left with a remainder of 1. So d is
a prime and it is not in the list. But this is a contradiction, as the list is defined
to contain all the primes. Thus, assuming that the number of primes is finite
leads to a contradiction. We are left to conclude that the number of primes is
infinite. �

This is basically the proof that Euclid gave over 2000 years ago.
There are many more results on the distribution of primes, but interestingly

enough, there is no easy formula for the exact number of primes in a specific
interval. Primes seem to occur fairly randomly. There are even very simple
conjectures that have never been proven. For example, the Goldbach conjecture
is that every even number greater than 2 is the sum of two primes. This is easy to
verify with a computer for relatively small even numbers, but mathematicians
still don’t know whether it is true for all even numbers.

The fundamental theorem of arithmetic is also useful to know: any integer
greater than 1 can be written in exactly one way as the product of primes
(if you disregard the order in which you write the primes). For example,
15 = 3 · 5; 255 = 3 · 5 · 17; and 60 = 2 · 2 · 3 · 5. We won’t prove this here. Check
any textbook on number theory if you want to know the details.

166 Part III ■ Key Negotiation

10.2 Generating Small Primes

Sometimes it is useful to have a list of small primes, so here is the Sieve of
Eratosthenes, which is still the best algorithm for generating small primes. The
220 in the pseudocode below is a stand-in for any appropriate small constant.

function SmallPrimeList
input: n Limit on primes to generate. Must satisfy 2 ≤ n ≤ 220.
output: P List of all primes ≤ n.

Limit the size of n. If n is too large we run out of memory.
assert 2 ≤ n ≤ 220

Initialize a list of flags all set to one.
(b2, b3, . . . , bn) ← (1, 1, . . . , 1)
i ← 2
while i2 ≤ n do

We have found a prime i. Mark all multiples of i composite.
for j ∈ 2i, 3i, 4i, . . . , �n/i�i do

bj ← 0
od
Look for the next prime in our list. It can be shown that this loop never results

in the condition i > n, which would access a nonexistent bi.
repeat

i ← i + 1
until bi = 1

od
All our primes are now marked with a one. Collect them in a list.
P ← []
for k ∈ 2, 3, 4, . . . , n do

if bk = 1 then
P ← P ‖ k

fi
od
return P

The algorithm is based on a simple idea. Any composite number c is divisible
by a prime that is smaller than c. We keep a list of flags, one for each of the
numbers up to n. Each flag indicates whether the corresponding number could
be prime. Initially all numbers are marked as potential primes by setting the
flag to 1. We start with i being the first prime 2. Of course, none of the multiples
of i can be prime so we mark 2i, 3i, 4i, etc. as being composite by setting their
flag to 0. We then increment i until we have another candidate prime. Now

Chapter 10 ■ Primes 167

this candidate is not divisible by any smaller prime, or it would have been
marked as a composite already. So the new i must be the next prime. We keep
marking the composite numbers and finding the next prime until i2 > n.

It is clear that no prime will ever be marked as a composite, since we only
mark a number as a composite when we know a factor of it. (The loop that
marks them as composite loops over 2i, 3i, Each of these terms has a factor
i and therefore cannot be prime.)

Why can we stop when i2 > n? Well, suppose a number k is composite, and
let p be its smallest divisor greater than 1. We already know that p is prime
(see Lemma 2). Let q := k/p. We now have p ≤ q; otherwise, q would be a
divisor of k smaller than p, which contradicts the definition of p. The crucial
observation is that p ≤ √

k, because if p were larger than
√

k we would have
k = p · q >

√
k · q ≥ √

k · p >
√

k · √k = k. This last inequality would show that
k > k, which is an obvious fallacy. So p ≤ √

k.
We have shown that any composite k is divisible by a prime ≤ √

k. So any
composite ≤ n is divisible by a prime ≤ √

n. When i2 > n then i >
√

n. But we
have already marked the multiples of all the primes less than i as composite in
the list, so every composite < n has already been marked as such. The numbers
in the list that are still marked as primes are really prime.

The final part of the algorithm simply collects them in a list to be returned.
There are several optimizations you can make to this algorithm, but we have

left them out to make things simpler. Properly implemented, this algorithm is
very fast.

You might wonder why we need the small primes. It turns out that small
primes are useful to generate large primes with, something we will get
to soon.

10.3 Computations Modulo a Prime

The main reason why primes are so useful in cryptography is that you can
compute modulo a prime.

Let p be a prime. When we compute modulo a prime we only use the
numbers 0, 1, . . . , p − 1. The basic rule for computations modulo a prime is
to do the computations using the numbers as integers, just as you normally
would, but every time you get a result r you take it modulo p. Taking a modulo
is easy: just divide the result r by p, throw away the quotient, and keep the
remainder as the answer. For example, if you take 25 modulo 7 you divide
25 by 7, which gives us a quotient of 3 with a remainder of 4. The remainder
is the answer, so (25 mod 7) = 4. The notation (a mod b) is used to denote an
explicit modulo operation, but modulo computations are used very often, and
there are several other notations in general use. Often the entire equation will

168 Part III ■ Key Negotiation

be written without any modulo operations, and then (mod p) will be added
at the end of the equation to remind you that the whole thing is to be taken
modulo p. When the situation is clear from the context, even this is left out,
and you have to remember the modulo yourself.

You don’t need to write parentheses around a modulo computation. We
could just as well have written a mod b, but as the modulo operator looks very
much like normal text, this can be a bit confusing for people who are not used
to it. To avoid confusion we tend to either put (a mod b) in parentheses or
write a (mod b), depending on which is clearer in the relevant context.

One word of warning: Any integer taken modulo p is always in the range
0, . . . , p − 1, even if the original integer is negative. Some programming lan-
guages have the (for mathematicians very irritating) property that they allow
negative results from a modulo operation. If you want to take −1 modulo p,
then the answer is p − 1. More generally: to compute (a mod p), find integers
q and r such that a = qp + r and 0 ≤ r < p. The value of (a mod p) is defined to
be r. If you fill in a = −1 then you find that q = −1 and r = p − 1.

10.3.1 Addition and Subtraction
Addition modulo p is easy. Just add the two numbers, and subtract p if the
result is greater than or equal to p. As both inputs are in the range 0, . . . , p − 1,
the sum cannot exceed 2p − 1, so you have to subtract p at most once to get the
result back in the proper range.

Subtraction is similar to addition. Subtract the numbers, and add p if the
result is negative.

These rules only work when the two inputs are both modulo p numbers
already. If they are outside the range, you have to do a full reduction modulo p.

It takes a while to get used to modulo computations. You get equations like
5 + 3 = 1 (mod 7). This looks odd at first. You know that 5 plus 3 is not 1. But
while 5 + 3 = 8 is true in the integer numbers, working modulo 7 we have
8 mod 7 = 1, so 5 + 3 = 1 (mod 7).

We use modulo arithmetic in real life quite often without realizing it. When
computing the time of day, we take the hours modulo 12 (or modulo 24). A
bus schedule might state that the bus leaves at 55 minutes past the hour and
takes 15 minutes. To find out when the bus arrives, we compute 55 + 15 = 10
(mod 60), and determine it arrives at 10 minutes past the hour. For now we will
restrict ourselves to computing modulo a prime, but you can do computations
modulo any number you like.

One important thing to note is that if you have a long equation like 5 + 2 +
5 + 4 + 6 (mod 7), you can take the modulo at any point in the computation.

Chapter 10 ■ Primes 169

For example, you could sum up 5 + 2 + 5 + 4 + 6 to get 22, and the compute
22 (mod 7) to get 1. Alternately, you could compute 5 + 2 (mod 7) to get 0,
then compute 0 + 5 (mod 7) to get 5, and then 5 + 4 (mod 7) to get 2, and then
2 + 6 (mod 7) to get 1.

10.3.2 Multiplication
Multiplication is, as always, more work than addition. To compute (ab mod p)
you first compute ab as an integer, and then take the result modulo p. Now
ab can be as large as (p − 1)2 = p2 − 2p + 1. Here you have to perform a long
division to find (q, r) such that ab = qp + r and 0 ≤ r < p. Throw away the q;
the r is the answer.

Let’s give you an example: Let p = 5. When we compute 3 · 4 (mod p) the
result is 2. After all, 3 · 4 = 12, and (12 mod 5) = 2. So we get 3 · 4 = 2 (mod p).

As with addition, you can compute the modulus all at once or iteratively.
For example, given a long equation 3 · 4 · 2 · 3 (mod p), you can compute
3 · 4 · 2 · 3 = 72 and then compute (72 mod 5) = 2. Or you could compute
(3 · 4 mod 5) = 2, then (2 · 2 mod 5) = 4, and then (4 · 3 mod 5) = 2.

10.3.3 Groups and Finite Fields
Mathematicians call the set of numbers modulo a prime p a finite field and
often refer to it as the ‘‘mod p’’ field, or simply ‘‘mod p.’’ Here are some useful
reminders about computations in a mod p field:

You can always add or subtract any multiple of p from your numbers
without changing the result.

All results are always in the range 0, 1, . . . , p − 1.

You can think of it as doing your entire computation in the integers and
only taking the modulo at the very last moment. So all the algebraic rules
you learned about the integers (such as a(b + c) = ab + ac) still apply.

The finite field of the integers modulo p is referred to using different
notations in different books. We will use the notation Zp to refer to the finite
field modulo p. In other texts you might see GF(p) or even Z/pZ.

We also have to introduce the concept of a group—another mathematical
term, but a simple one. A group is simply a set of numbers together with an
operation, such as addition or multiplication.2 The numbers in Zp form a group
together with addition. You can add any two numbers and get a third number

2There are a couple of further requirements, but they are all met by the groups we will be talking
about.

170 Part III ■ Key Negotiation

in the group. If you want to use multiplication in a group you cannot use the 0.
(This has to do with the fact that multiplying by 0 is not very interesting, and
that you cannot divide by 0.) However, the numbers 1, . . . , p − 1 together with
multiplication modulo p form a group. This group is called the multiplicative
group modulo p and is written in various ways; we will use the notation Z

∗
p. A

finite field consists of two groups: the addition group and the multiplication
group. In the case of Zp the finite field consists of the addition group, defined
by addition modulo p, and the multiplication group Z

∗
p.

A group can contain a subgroup. A subgroup consists of some of the elements
of the full group. If you apply the group operation to two elements of the
subgroup, you again get an element of the subgroup. That sounds complicated,
so here is an example. The numbers modulo 8 together with addition (modulo
8) form a group. The numbers { 0, 2, 4, 6 } form a subgroup. You can add any
two of these numbers modulo 8 and get another element of the subgroup. The
same goes for multiplicative groups. The multiplicative subgroup modulo 7
consists of the numbers 1, . . . , 6, and the operation is multiplication modulo 7.
The set { 1, 6 } forms a subgroup, as does the set { 1, 2, 4 }. You can check that
if you multiply any two elements from the same subgroup modulo 7, you get
another element from that subgroup.

We use subgroups to speed up certain cryptographic operations. They can
also be used to attack systems, which is why you need to know about them.

So far we’ve only talked about addition, subtraction, and multiplication
modulo a prime. To fully define a multiplicative group you also need the
inverse operation of multiplication: division. It turns out that you can define
division on the numbers modulo p. The simple definition is that a/b (mod p) is
a number c such that c · b = a (mod p). You cannot divide by zero, but it turns
out that the division a/b (mod p) is always well defined as long as b
= 0.

So how do you compute the quotient of two numbers modulo p? This is
more complicated, and it will take a few pages to explain. We first have to go
back more than 2000 years to Euclid again, and to his algorithm for the GCD.

10.3.4 The GCD Algorithm
Another high-school math refresher course: The greatest common divisor (or
GCD) of two numbers a and b is the largest k such that k | a and k | b. In other
words, gcd(a, b) is the largest number that divides both a and b.

Euclid gave an algorithm for computing the GCD of two numbers that is
still in use today, thousands of years later. For a detailed discussion of this
algorithm, see Knuth [75].

function GCD
input: a Positive integer.

b Positive integer.

Chapter 10 ■ Primes 171

output: k The greatest common divisor of a and b.
assert a ≥ 0 ∧ b ≥ 0
while a
= 0 do

(a, b) ← (b mod a, a)
od
return b

Why would this work? The first observation is that the assignment does not
change the set of common divisors of a and b. After all, (b mod a) is just b − sa
for some integer s. Any number k that divides both a and b will also divide
both a and (b mod a). (The converse is also true.) And when a = 0, then b is
a common divisor of a and b, and b is obviously the largest such common
divisor. You can check for yourself that the loop must terminate because a and
b keep getting smaller and smaller until they reach zero.

Let’s compute the GCD of 21 and 30 as an example. We start with (a, b) =
(21, 30). In the first iteration we compute (30 mod 21) = 9, so we get (a, b) =
(9, 21). In the next iteration we compute (21 mod 9) = 3, so we get (a, b) = (3, 9).
In the final iteration we compute (9 mod 3) = 0 and get (a, b) = (0, 3). The algo-
rithm will return 3, which is indeed the greatest common divisor of 21 and 30.

The GCD has a cousin: the LCM or least common multiple. The LCM of a and
b is the smallest number that is both a multiple of a and a multiple of b. For
example, lcm(6, 8) = 24. The GCD and LCM are tightly related by the equation

lcm(a, b) = ab
gcd(a, b)

which we won’t prove here but just state as a fact.

10.3.5 The Extended Euclidean Algorithm
This still does not help us to compute division modulo p. For that, we need what
is called the extended Euclidean algorithm. The idea is that while computing
gcd(a, b) we can also find two integers u and v such that gcd(a, b) = ua + vb.
This will allow us to compute a/b (mod p).

function extendedGCD
input: a Positive integer argument.

b Positive integer argument.
output: k The greatest common divisor of a and b.

(u, v) Integers such that ua + vb = k.
assert a ≥ 0 ∧ b ≥ 0
(c, d) ← (a, b)
(uc, vc, ud, vd) ← (1, 0, 0, 1)
while c
= 0 do

172 Part III ■ Key Negotiation

Invariant: uca + vcb = c ∧ uda + vdb = d
q ← �d/c�
(c, d) ← (d − qc, c)
(uc, vc, ud, vd) ← (ud − quc, vd − qvc, uc, vc)

od
return d, (ud, vd)

This algorithm is very much like the GCD algorithm. We introduce new
variables c and d instead of using a and b because we need to refer to the
original a and b in our invariant. If you only look at c and d, this is exactly
the GCD algorithm. (We’ve rewritten the d mod c formula slightly, but this
gives the same result.) We have added four variables that maintain the given
invariant; for each value of c or d that we generate, we keep track of how to
express that value as a linear combination of a and b. For the initialization this
is easy, as c is initialized to a and d to b. When we modify c and d in the loop it
is not terribly difficult to update the u and v variables.

Why bother with the extended Euclidean algorithm? Well, suppose we
want to compute 1/b mod p where 1 ≤ b < p. We use the extended Euclidean
algorithm to compute extendedGCD(b, p). Now, we know that the GCD of b
and p is 1, because p is prime and it therefore has no other suitable divisors.
But the extendedGCD function also provides two numbers u and v such
that ub + vp = gcd(b, p) = 1. In other words, ub = 1 − vp or ub = 1 (mod p).
This is the same as saying that u = 1/b (mod p), the inverse of b modulo p.
The division a/b can now be computed by multiplying a by u, so we get
a/b = au (mod p), and this last formula is something that we know how to
compute.

The extended Euclidean algorithm allows us to compute an inverse modulo
a prime, which in turn allows us to compute a division modulo p. Together
with the addition, subtraction, and multiplication modulo p, this allows us to
compute all four elementary operations in the finite field modulo p.

Note that u could be negative, so it is probably a good idea to reduce u
modulo p before using it as the inverse of b.

If you look carefully at the extendedGCD algorithm, you’ll see that if you
only want u as output, you can leave out the vc and vd variables, as they do not
affect the computation of u. This slightly reduces the amount of work needed
to compute a division modulo p.

10.3.6 Working Modulo 2
An interesting special case is computation modulo 2. After all, 2 is a prime,
so we should be able to compute modulo it. If you’ve done any programming
this might look familiar to you. The addition and multiplication tables modulo
2 are shown in Figure 10.1. Addition modulo 2 is exactly the exclusive-or (xor)

Chapter 10 ■ Primes 173

function you find in programming languages. Multiplication is just a simple
and operation. In the field modulo 2 there is only one inversion possible
(1/1 = 1) so division is the same operation as multiplication. It shouldn’t
surprise you that the field Z2 is an important tool to analyze certain algorithms
used by computers.

+ 0 1

0 1

1 01

0

0 1

0 0

0 11

0

Figure 10.1: Addition and multiplication modulo 2

10.4 Large Primes

Several cryptographic primitives use very large primes, and we’re talking
about many hundreds of digits here. Don’t worry, you won’t have to compute
with these primes by hand. That’s what the computer is for.

To do any computations at all with numbers this large, you need a mul-
tiprecision library. You cannot use floating-point numbers, because they do
not have several hundred digits of precision. You cannot use normal integers,
because in most programming languages they are limited to a dozen digits or
so. Few programming languages provide native support for arbitrary preci-
sion integers. Writing routines to perform computations with large integers is
fascinating. For a good overview, see Knuth [75, Section 4.3]. However, imple-
menting a multiprecision library is far more work than you might expect. Not
only do you have to get the right answer, but you always strive to compute
it as quickly as possible. There are quite a number of special situations you
have to deal with carefully. Save your time for more important things, and
download one of the many free libraries from the Internet, or use a language
like Python that has built-in large integer support.

For public-key cryptography, the primes we want to generate are 2000–4000
bits long. The basic method of generating a prime that large is surprisingly
simple: take a random number and check whether it is prime. There are very
good algorithms to determine whether a large number is prime or not. There
are also very many primes. In the neighborhood of a number n, approximately
one in every ln n numbers is prime. (The natural logarithm of n, or ln n for
short, is one of the standard functions on any scientific calculator. To give
you an idea of how slowly the logarithm grows when applied to large inputs:
the natural logarithm of 2k is slightly less than 0.7 · k.) A number that is
2000 bits long falls between 21999 and 22000. In that range, about one in every
1386 of the numbers is prime. And this includes a lot of numbers that are
trivially composite, such as the even numbers.

174 Part III ■ Key Negotiation

Generating a large prime looks something like this:

function generateLargePrime
input: l Lower bound of range in which prime should lie.

u Upper bound of range in which prime should lie.
output: p A random prime in the interval l, . . . , u

Check for a sensible range.
assert 2 < l ≤ u
Compute maximum number of attempts
r ← 100(�log2 u� + 1)
repeat

r ← r − 1
assert r > 0
Choose n randomly in the right interval
n ∈R l, . . . , u
Continue trying until we find a prime.

until isPrime(n)
return n

We use the operator ∈R to indicate a random selection from a set. Of course,
this requires some output from the prng.

The algorithm is relatively straightforward. We first check that we get a
sensible interval. The cases l ≤ 2 and l ≥ u are not useful and lead to problems.
Note the boundary condition: the case l = 2 is not allowed.3 Next we compute
how many attempts we are going to make to find a prime. There are intervals
that do not contain a prime. For example, the interval 90, . . . , 96 is prime-free.
A proper program should never hang, independent of its inputs, so we limit
the number of tries and generate a failure if we exceed this number. How
many times should we try? As stated before, in the neighborhood of u about
one in every 0.7 log2 u numbers is prime. (The function log2 is the logarithm
to the base 2. The simplest definition is that log2(x) := ln x/ ln 2). The number
log2 u is difficult to compute but �log2 u� + 1 is much easier; it is the number
of bits necessary to represent u as a binary number. So if u is an integer
that is 2017 bits long, then �log2 u� + 1 = 2017. The factor 100 ensures that it is
extremely unlikely that we will not find a prime. For large enough intervals, the
probability of a failure due to bad luck is less than 2−128, so we can ignore this
risk. At the same time, this limit does ensure that the generateLargePrime
function will terminate. We’ve been a bit sloppy in our use of an assertion to

3The Rabin-Miller algorithm we use below does not work well when it gets 2 as an argument.
That’s okay, we already know that 2 is prime so we don’t have to generate it here.

Chapter 10 ■ Primes 175

generate the failure; a proper implementation would generate an error with
explanations of what went wrong.

The main loop is simple. After the check that limits the number of tries, we
choose a random number and check whether it is prime using the isPrime
function. We will define this function shortly.

Make sure that the number n you choose is uniformly random in the range
l, . . . , u. Also make sure that the range is not too small if you want your prime
to be a secret. If the attacker knows the interval you use, and there are fewer
than 2128 primes in that interval, the attacker could potentially try them all.

If you wish, you can make sure the random number you generate is odd by
setting the least significant bit just after you generate a candidate n. As 2 is not
in your interval, this will not affect the probability distribution of primes you
are choosing, and it will halve the number of attempts you have to make. But
this is only safe if u is odd; otherwise, setting the least significant bit might
bump n just outside the allowed range. Also, this will generate some small
bias away from l if l is odd.

The isPrime function is a two-step filter. The first phase is a simple test
where we try to divide n by all the small primes. This will quickly weed out the
great majority of numbers that are composite and divisible by a small prime. If
we find no divisors, we employ a heavyweight test called the Rabin-Miller test.

function isPrime
input: n Integer ≥ 3.
output: b Boolean whether n is prime.

assert n ≥ 3
for p ∈ {

all primes ≤ 1000
}

do
if p is a divisor of n then

return p = n
fi

od
return Rabin-Miller(n)

If you are lazy and don’t want to generate the small primes, you can cheat
a bit. Instead of trying all the primes, you can try 2 and all odd numbers
3, 5, 7, . . . , 999, in that order. This sequence contains all the primes below 1000,
but it also contains a lot of useless composite numbers. The order is important
to ensure that a small composite number like 9 is properly detected as being
composite. The bound of 1000 is arbitrary and can be chosen for optimal
performance.

All that remains to explain is the mysterious Rabin-Miller test that does the
hard work.

176 Part III ■ Key Negotiation

10.4.1 Primality Testing
It turns out to be remarkably easy to test whether a number is prime. At least,
it is remarkably easy compared to factoring a number and finding its prime
divisors. These easy tests are not perfect. They are all probabilistic. There is a
certain chance they give the wrong answer. By repeatedly running the same
test we can reduce the probability of error to an acceptable level.

The primality test of choice is the Rabin-Miller test. The mathematical basis
for this test is well beyond the scope of this book, although the outline is fairly
simple. The purpose of this test is to determine whether an odd integer n is
prime. We choose a random value a less than n, called the basis, and check a
certain property of a modulo n that always holds when n is prime. However,
you can prove that when n is not a prime, this property holds for at most 25%
of all possible basis values. By repeating this test for different random values
of a, you build your confidence in the final result. If n is a prime, it will always
test as a prime. If n is not a prime, then at least 75% of the possible values for
a will show so, and the chance that n will pass multiple tests can be made as
small as you want. We limit the probability of a false result to 2−128 to achieve
our required security level.

Here is how it goes:

function Rabin-Miller
input: n An odd number ≥ 3.
output: b Boolean indicating whether n is prime or not.

assert n ≥ 3 ∧ n mod 2 = 1
First we compute (s, t) such that s is odd and 2ts = n − 1.
(s, t) ← (n − 1, 0)
while s mod 2 = 0 do

(s, t) ← (s/2, t + 1)
od
We keep track of the probability of a false result in k. The probability is at most

2−k. We loop until the probability of a false result is small enough.
k ← 0
while k < 128 do

Choose a random a such that 2 ≤ a ≤ n − 1.
a ∈R 2, . . . , n − 1
The expensive operation: a modular exponentiation.
v ← as mod n
When v = 1, the number n passes the test for basis a.
if v
= 1 then

The sequence v, v2, . . . , v2t must finish on the value 1, and the last value
not equal to 1 must be n − 1 if n is a prime.

Chapter 10 ■ Primes 177

i ← 0
while v
= n − 1 do

if i = t − 1 then
return false

else
(v, i) ← (v2 mod n, i + 1)

fi
od

fi

When we get to this point, n has passed the primality test for the basis a. We
have therefore reduced the probability of a false result by a factor of
22, so we can add 2 to k.

k ← k + 2
od
return true

This algorithm only works for an odd n greater or equal to 3, so we test
that first. The isPrime function should only call this function with a suitable
argument, but each function is responsible for checking its own inputs and
outputs. You never know how the software will be changed in future.

The basic idea behind the test is known as Fermat’s little theorem.4 For
any prime n and for all 1 ≤ a < n, the relation an−1 mod n = 1 holds. To fully
understand the reasons for this requires more math than we will explain here.
A simple test (also called the Fermat primality test) verifies this relation for a
number of randomly chosen a values. Unfortunately, there are some obnoxious
numbers called the Carmichael numbers. These are composite but they pass
the Fermat test for (almost) all basis a.

The Rabin-Miller test is a variation of the Fermat test. First we write n − 1
as 2ts, where s is an odd number. If you want to compute an−1 you can first
compute as and then square the result t times to get as·2t = an−1. Now if as = 1
(mod n) then repeated squaring will not change the result so we have an−1 = 1
(mod n). If as
= 1 (mod n), then we look at the numbers as, as·2, as·22 , as·23 , . . . , as·2t

(all modulo n, of course). If n is a prime, then we know that the last number
must be 1. If n is a prime, then the only numbers that satisfy x2 = 1 (mod n)
are 1 and n − 1.5 So if n is prime, then one of the numbers in the sequence
must be n − 1, or we could never have the last number be equal to 1. This is
really all the Rabin-Miller test checks. If any choice of a demonstrates that n is
composite, we return immediately. If n continues to test as a prime, we repeat
the test for different a values until the probability that we have generated a

4There are several theorems named after Fermat. Fermat’s last Theorem is the most famous one,
involving the equation an + bn = cn and a proof too large to fit in the margin of the page.
5It is easy to check that (n − 1)2 = 1 (mod n).

178 Part III ■ Key Negotiation

wrong answer and claimed that a composite number is actually prime is less
than 2−128.

If you apply this test to a random number, the probability of failure of this
test is much, much smaller than the bound we use. For almost all composite
numbers n, almost all basis values will show that n is composite. You will
find a lot of libraries that depend on this and perform the test for only 5 or 10
bases or so. This idea is fine, though we would have to investigate how many
attempts are needed to reach an error level of 2−128 or less. But it only holds as
long as you apply the isPrime test to randomly chosen numbers. Later on we
will encounter situations where we apply the primality test to numbers that
we received from someone else. These might be maliciously chosen, so the
isPrime function must achieve a 2−128 error bound all by itself.

Doing the full 64 Rabin-Miller tests is necessary when we receive the number
to be tested from someone else. It is overkill when we try to generate a prime
randomly. But when generating a prime, you spend most of your time rejecting
composite numbers. (Almost all composite numbers are rejected by the very
first Rabin-Miller test that you do.) As you might have to try hundreds of
numbers before you find a prime, doing 64 tests on the final prime is only
marginally slower than doing 10 of them.

In an earlier version of this chapter, the Rabin-Miller routine had a second
argument that could be used to select the maximum error probability. But it was
a perfect example of a needless option, so we removed it. Always doing a good
test to a 2−128 bound is simpler, and much less likely to be improperly used.

There is still a chance of 2−128 that our isPrime function will give you the
wrong answer. To give you an idea of how small this chance actually is, the
chance that you will be killed by a meteorite while you read this sentence is
far larger. Still alive? Okay, so don’t worry about it.

10.4.2 Evaluating Powers
The Rabin-Miller test spends most of its time computing as mod n. You cannot
compute as first and then take it modulo n. No computer in the world has
enough memory to even store as, much less the computing power to compute
it; both a and s can be thousands of bits long. But we only need as mod n; we
can apply the mod n to all the intermediate results, which stops the numbers
from growing too large.

There are several ways of computing as mod n, but here is a simple descrip-
tion. To compute as mod n, use the following rules:

If s = 0 the answer is 1.

If s > 0 and s is even, then first compute y := as/2 mod n using these very
same rules. The answer is given by as mod n = y2 mod n.

Chapter 10 ■ Primes 179

If s > 0 and s is odd, then first compute y := a(s−1)/2 mod n using these
very same rules. The answer is given by as mod n = a · y2 mod n.

This is a recursive formulation of the so-called binary algorithm. If you look
at the operations performed, it builds up the desired exponent bit by bit from
the most significant part of the exponent down to the least significant part. It
is also possible to convert this from a recursive algorithm to a loop.

How many multiplications are required to compute as mod n? Let k be the
number of bits of s; i.e., 2k−1 ≤ s < 2k. Then this algorithm requires at most
2k multiplications modulo n. This is not too bad. If we are testing a 2000-bit
number for primality, then s will also be about 2000 bits long, and we only
need 4000 multiplications. That is still a lot of work, but certainly within the
capabilities of most desktop computers.

Many public-key cryptographic systems make use of modular exponentia-
tions like this. Any good multiprecision library will have an optimized routine
for evaluating modular exponentiations. A special type of multiplication called
Montgomery multiplication is well suited for this task. There are also ways of
computing as using fewer multiplications [18]. Each of these tricks can save
10%–30% of the time it takes to compute a modular exponentiation, so used
in combination they can be important.

Straightforward implementations of modular exponentiation are often vul-
nerable to timing attacks. See Section 15.3 for details and possible remedies.

10.5 Exercises

Exercise 10.1 Implement SmallPrimeList. What is the worst-case per-
formance of SmallPrimeList? Generate a graph of the timings for your
implementation and n = 2, 4, 8, 16, . . . , 220.

Exercise 10.2 Compute 13635 + 16060 + 8190 + 21363 (mod 29101) in two
ways and verify the equivalence: by reducing modulo 29101 after each addition
and by computing the entire sum first and then reducing modulo 29101.

Exercise 10.3 Compute the result of 12358 · 1854 · 14303 (mod 29101) in
two ways and verify the equivalence: by reducing modulo 29101 after each
multiplication and by computing the entire product first and then reducing
modulo 29101.

Exercise 10.4 Is { 1, 3, 4 } a subgroup of the multiplicative group of integers
modulo 7?

Exercise 10.5 Use the GCD algorithm to compute the GCD of 91261 and
117035.

180 Part III ■ Key Negotiation

Exercise 10.6 Use the ExtendedGCD algorithm to compute the inverse of 74
modulo the prime 167.

Exercise 10.7 Implement GenerateLargePrime using a language or library
that supports big integers. Generate a prime within the range l = 2255 and
u = 2256 − 1.

Exercise 10.8 Give pseudocode for the exponentiation routine described in
Section 10.4.2. Your pseudocode should not be recursive but should instead
use a loop.

Exercise 10.9 Compute 2735 (mod 569) using the exponentiation routine
described in Section 10.4.2. How many multiplications did you have to per-
form?

C H A P T E R

11

Diffie-Hellman

For our discussion of public-key cryptography, we’re going to follow the
historical path. Public-key cryptography was really started by Whitfield Diffie
and Martin Hellman when they published their article ‘‘New Directions in
Cryptography’’ in 1976 [33].

So far in this book, we’ve only talked about encryption and authentication
with shared secret keys. But where do we get those shared secret keys from?
If you have 10 friends you want to communicate with, you can meet them all
and exchange a secret key with each of these friends for future use. But like all
keys, these keys should be refreshed regularly, so at some point you will have
to meet and exchange keys all over again. A total of 45 keys are needed for a
group of 10 friends. But as the group gets larger, the number of keys grows
quadratically. For 100 people all communicating with each other, you need
4950 keys. Specifically, in a group of N people, we would need N(N − 1)/2
keys. This quickly becomes unmanageable.

Diffie and Hellman posed the question of whether it would be possible to
do this more efficiently. Suppose you have an encryption algorithm where
the encryption and decryption keys are different. You could publish your
encryption key and keep your decryption key secret. Anyone could then send
you an encrypted message, and only you could decrypt it. This would solve
the problem of having to distribute so many different keys.

Diffie and Hellman posed the question, but they could only provide a
partial answer. Their partial solution is today known as the Diffie-Hellman
key exchange protocol, often shortened to DH protocol [33].

181

182 Part III ■ Key Negotiation

The DH protocol is a really nifty idea. It turns out that two people commu-
nicating over an insecure line can agree on a secret key in such a way that both
of them end up with the same key, without divulging it to someone who is
listening in on their conversation.

11.1 Groups

If you’ve read the last chapter, it won’t surprise you that primes are involved.
For the rest of this chapter, p is a large prime. Think of p as being 2000 to
4000 bits long. Most of our computations in this chapter will be modulo p—in
many places we will not specify this again explicitly. The DH protocol uses Z

∗
p,

the multiplicative group modulo p that we discussed in Section 10.3.3.
Choose any g in the group and consider the numbers 1, g, g2, g3, . . . , all

modulo p, of course. This is an infinite sequence of numbers, but there is
only a finite set of numbers in Z

∗
p. (Remember, Z

∗
p is the numbers 1, . . . , p − 1

together with the operation of multiplication modulo p.) At some point, the
numbers must start to repeat. Let us assume this happens at gi = gj with
i < j. As we can do division modulo p, we can divide each side by gi and get
1 = gj−i. In other words, there is a number q := j − i such that gq = 1 (mod p).
We call the smallest positive value q for which gq = 1 (mod p) the order of g.
(Unfortunately, there is quite a bit of terminology associated with this stuff.
We feel it is better to use the standard terminology than invent our own words;
this will avoid confusion when reading other books.)

If we keep on multiplying gs, we can reach the numbers 1, g, g2, . . . , gq−1.
After that, the sequence repeats as gq = 1. We say that g is a generator and that
it generates the set 1, g, g2, . . . , gq−1. The number of elements that can be written
as a power of g is exactly q, the order of g.

One property of multiplication modulo p is that there is at least one g that
generates the entire group. That is, there is at least one g value for which
q = p − 1. So instead of thinking of Z

∗
p as the numbers 1, . . . , p − 1, we can also

think of them as 1, g, g2, . . . , gp−2. A g that generates the entire group is called a
primitive element of the group.

Other values of g can generate smaller sets. Observe that if we multiply two
numbers from the set generated by g, we get another power of g, and therefore
another element from the set. If you go through all the math, it turns out that the
set generated by g is another group. That is, you can multiply and divide in this
group just as you can in the large group modulo p. These smaller groups are
called subgroups (see Section 10.3.3). They will be important in various attacks.

There is one last thing to explain. For any element g, the order of g is a
divisor of p − 1. This isn’t too hard to see. Choose g to be a primitive element.
Let h be any other element. As g generates the whole group, there is an x such

Chapter 11 ■ Diffie-Hellman 183

that h = gx. Now consider the elements generated by h. These are 1, h, h2, h3, . . .
which are equal to 1, gx, g2x, g3x, (All our computations are still modulo p,
of course.) The order of h is the smallest q at which hq = 1, which is the same
as saying it is the smallest q such that gxq = 1. For any t, gt = 1 is the same as
saying t = 0 (mod p − 1). So q is the smallest q such that xq = 0 (mod p − 1).
This happens when q = (p − 1)/ gcd(x, p − 1). So q is obviously a factor of p − 1.

Here’s a simple example. Let’s choose p = 7. If we choose g = 3 then g is
a primitive element because 1, g, g2, . . . , g5 = 1, 3, 2, 6, 4, 5. (Again, all computa-
tions are modulo p.) The element h = 2 generates the subgroup 1, h, h2 = 1, 2, 4
because h3 = 23 mod 7 = 1. The element h = 6 generates the subgroup 1, 6. These
subgroups have sizes 3 and 2 respectively, which are both divisors of p − 1.

This also explains parts of the Fermat test we talked about in Section 10.4.1.
Fermat’s test is based on the fact that for any a we have ap−1 = 1. This is
easy to check. Let g be a generator of Z

∗
p, and let x be such that gx = a. As

g is a generator of the entire group, there is always such an x. But now
ap−1 = gx(p−1) = (gp−1)x = 1x = 1.

11.2 Basic DH

For the original DH protocol, we first choose a large prime p, and a primitive
element g that generates the whole group Z

∗
p. Both p and g are public constants

in this protocol, and we assume that all parties, including the attackers, know
them. The protocol is shown in Figure 11.1. This is one of the usual ways in
which we write cryptographic protocols. There are two parties involved: Alice
and Bob. Time progresses from the top to the bottom. First Alice chooses a
random x in Z

∗
p, which is the same as choosing a random number in 1, . . . , p − 1.

She computes gx mod p and sends the result to Bob. Bob in turn chooses a
random y in Z

∗
p. He computes gy mod p and sends the result to Alice. The final

result k is defined as gxy. Alice can compute this by raising the gy she got from
Bob to the power x that she knows. (High-school math: (gy)x = gxy.) Similarly,
Bob can compute k as (gx)y. They both end up with the same value k, which
they can use as a secret key.

But what about an attacker? The attacker gets to see gx and gy, but not x or y.
The problem of computing gxy given gx and gy is known as the Diffie-Hellman
problem, or DH problem for short. As long as p and g are chosen correctly,
there is no known efficient algorithm to compute this. The best method known
is to first compute x from gx, after which the attacker can compute k as (gy)x just
like Alice did. In the real numbers, computing x from gx is called the logarithm
function, which you find on any scientific calculator. In the finite field Z

∗
p, it is

called a discrete logarithm, and in general the problem of computing x from gx

in a finite group is known as the discrete logarithm problem, or DL problem.

184 Part III ■ Key Negotiation

Alice Bob
x ∈R Z

∗
p

gx

−−−−−−−−−−−−→
y ∈R Z

∗
p

gy

←−−−−−−−−−−−−
k ← (gy)x k ← (gx)y

Figure 11.1: The original Diffie-Hellman protocol.

The original DH protocol can be used in many ways. We’ve written it as an
exchange of messages between two parties. Another way of using it is to let
everybody choose a random x, and publish gx (mod p) in the digital equivalent
of a phone book. If Alice wants to communicate with Bob securely, she gets
gy from the phone book, and using her x, computes gxy. Bob can similarly
compute gxy without any interaction with Alice. This makes the system usable
in settings such as e-mail where there is no direct interaction.

11.3 Man in the Middle

The one thing that DH does not protect against is the so-called man-in-the-
middle attack.1 Look back at the protocol. Alice knows she is communicating
with somebody, but she does not know with whom she is communicating.
Eve can sit in the middle of the protocol and pretend to be Bob when speaking
to Alice, and pretend to be Alice when speaking to Bob. This is shown in
Figure 11.2. To Alice, this protocol looks just like the original DH protocol.
There is no way in which Alice can detect that she is talking to Eve, not Bob.
The same holds for Bob. Eve can keep up these pretenses for as long as she
likes. Suppose Alice and Bob start to communicate using the secret key they
think they have set up. All Eve needs to do is forward all the communications
between Alice and Bob. Of course, Eve has to decrypt all the data she gets
from Alice that was encrypted with key k, and then encrypt it again with key
k′ to send to Bob. She has to do the same with the traffic in the other direction
as well, but that is not a lot of work.

With a digital phone book, this attack is harder. As long as the publisher of
the book verifies the identity of everybody when they send in their gx, Alice
knows she is using Bob’s gx. We’ll discuss other solutions when we talk about
digital signatures and PKIs later on in this book.

1The terminology may look similar, but a man-in-the-middle attack is different than a meet-in-
the-middle attack from Section 2.7.2.

Chapter 11 ■ Diffie-Hellman 185

Alice Eve Bob
x ∈R Z

∗
p

gx

−−−−→
v ∈R Z

∗
p

gv

−−−−→
y ∈R Z

∗
p

gy

←−−−−
w ∈R Z

∗
p

gw

←−−−−
k ← (gw)x k ← (gx)w

k′ ← (gy)v k′ ← (gv)y

Figure 11.2: Diffie-Hellman protocol with Eve in the middle.

There is at least one setting where the man-in-the-middle attack can be
addressed without further infrastructure. If the key k is used to encrypt a
phone conversation (or a video link), Alice can talk to Bob and recognize
him by his voice. Let h be a hash function of some sort. If Bob reads the
first few digits of h(k) to Alice, then Alice can verify that Bob is using the
same key she is. Alice can read the next few digits of h(k) to Bob, to allow
Bob to do the same verification. This works, but only in situations where
you can tie knowledge of the key k to the actual person on the other side.
In most computer communications, this solution is not possible. And if Eve
ever succeeds in building a speech synthesizer that can emulate Bob, it all
falls apart. Finally, the biggest problem with this solution is that it requires
discipline from the users, which is risky since users regularly ignore security
procedures. In general, it is much better to have technical mechanisms for
thwarting man-in-the-middle attacks.

11.4 Pitfalls

Implementing the DH protocol can be a bit tricky. For example, if Eve intercepts
the communications and replaces both gx and gy with the number 1, then both
Alice and Bob will end up with k = 1. The result is a key negotiation protocol
that looks as if it completed successfully, except that Eve knows the resulting
key. That is bad, and we will have to prevent this attack in some way.

A second problem is if the generator g is not a primitive element of Z
∗
p but

rather generates only a small subgroup. Maybe g has an order of one million.

186 Part III ■ Key Negotiation

In that case, the set
{

1, g, g2, . . . , gq−1
}

only contains a million elements. As
k is in this set, Eve can easily search for the correct key. Obviously, one of
the requirements is that g must have a high order. But who chooses p and g?
All users are using the same values, so most of them get these values from
someone else. To be safe, they have to verify that p and g are chosen properly.
Alice and Bob should each check that p is prime, and that g is a primitive
element modulo p.

The subgroups modulo p form a separate problem. Eve’s attack of replacing
gx with the number 1 is easy to counter by having Bob check for this. But Eve
could also replace gx with the number h, where h has a small order. The key
that Bob derives now comes from the small set generated by h, and Eve can try
all possible values to find k. (Of course, Eve can play the same attack against
Alice.) What both Alice and Bob have to do is verify that the numbers they
receive do not generate small subgroups.

Let’s have a look at the subgroups. Working modulo a prime, all (multiplica-
tive) subgroups can be generated from a single element. The entire group Z

∗
p

consists of the elements 1, . . . , p − 1 for a total of p − 1 elements. Each subgroup
is of the form 1, h, h2, h3, . . . , hq−1 for some h and where q is the order of h. As
we discussed earlier, it turns out that q must be a divisor of p − 1. In other
words: the size of any subgroup is a divisor of p − 1. The converse also holds:
for any divisor d of p − 1 there is a single subgroup of size d. If we don’t want
any small subgroups, then we must avoid small divisors of p − 1.

There is another reason for wanting large subgroups. It turns out that if the
prime factorization of p − 1 is known, then computing the discrete log of gx

can be broken down into a set of discrete log computations over subgroups.
This is a problem. If p is a large prime, then p − 1 is always even, and

therefore divisible by 2. Thus there is a subgroup with two elements; it consists
of the elements 1 and p − 1. But apart from this subgroup that is always
present, we can avoid other small subgroups by insisting that p − 1 have no
other small factors.

11.5 Safe Primes

One solution is to use a safe prime for p. A safe prime is a (large enough) prime
p of the form 2q + 1 where q is also prime. The multiplicative group Z

∗
p now

has the following subgroups:

The trivial subgroup consisting only of the number 1.

The subgroup of size 2, consisting of 1 and p − 1.

The subgroup of size q.

The full group of size 2q.

Chapter 11 ■ Diffie-Hellman 187

The first two are trivial to avoid. The third is the group we want to use.
The full group has one remaining problem. Consider the set of all numbers
modulo p that can be written as a square of some other number (modulo p, of
course). It turns out that exactly half the numbers in 1, . . . , p − 1 are squares,
and the other half are non-squares. Any generator of the entire group is a
non-square. (If it were a square, then raising it to some power could never
generate a non-square, so it does not generate the whole group.)

There is a mathematical function called the Legendre symbol that determines
whether a number modulo p is a square or not, without ever needing to find
the root. There are efficient algorithms for computing the Legendre symbol.
So if g is a non-square and you send out gx, then any observer, such as Eve,
can immediately determine whether x is even or odd. If x is even, then gx is a
square. If x is odd, then gx is a non-square. As Eve can determine the square-
ness of a number using the Legendre symbol function, she can determine
whether x is odd or even; Eve cannot learn the value x, except for the least
significant bit. The solution for avoiding this problem is to use only squares
modulo p. This is exactly the subgroup of order q. Another nice property is
that q is prime, so there are no further subgroups we have to worry about.

Here is how to use a safe prime. Choose (p, q) such that p = 2q + 1 and
both p and q are prime. (You can use the isPrime function to do this on a
trial-and-error basis.) Choose a random number α in the range 2, . . . , p − 2
and set g = α2 (mod p). Check that g
= 1 and g
= p − 1. (If g is one of these
forbidden values, choose another α and try again.) The resulting parameter
set (p, q, g) is suitable for use in the Diffie-Hellman protocol.

Every time Alice (or Bob) receives a value that is supposed to be a power
of g, she (or he) must check that the value received is indeed in the subgroup
generated by g. When you use a safe prime as described above, you can use the
Legendre symbol function to check for proper subgroup membership. There
is also a simpler but slower method. A number r is a square if and only if
r q = 1 (mod p). You also want to forbid the value 1, as its use always leads to
problems. So the full test is: r
= 1 ∧ r q mod p = 1.

11.6 Using a Smaller Subgroup

The disadvantage of using the safe prime approach is that it is inefficient. If the
prime p is n bits long, then q is n − 1 bits long and so all exponents are n − 1
bits long. The average exponentiation will take about 3n/2 multiplications of
numbers modulo p. For large primes p, this is quite a lot of work.

The standard solution is to use a smaller subgroup. Here is how that is done.
We start by choosing q as a 256-bit prime. (In other words: 2255 < q < 2256).
Next we find a (much) larger prime p such that p = Nq + 1 for some arbitrary

188 Part III ■ Key Negotiation

value N. To do this, we choose N randomly in the suitable range, compute p
as Nq + 1, and check whether p is prime. As p must be odd, it is easy to see
that N must be even. The prime p will be thousands of bits long.

Next, we have to find an element of order q. We do that in a similar fashion
to the safe prime case. Choose a random α in Z

∗
p and set g := αN. Now verify

that g
= 1 and gq = 1. (The case g = p − 1 is covered by the second test, as q is
odd.) If g is not satisfactory, choose a different α and try again. The resulting
parameter set (p, q, g) is suitable for use in the Diffie-Hellman protocol.

When we use this smaller subgroup, the values that Alice and Bob will
exchange are all in the subgroup generated by g. But Eve could interfere and
substitute a completely different value. Therefore, every time Alice or Bob
receives a value that is supposed to be in the subgroup generated by g, he or
she should check that it actually is. This check is the same as in the safe prime
case. A number r is in the proper subgroup if r
= 1 ∧ r q mod p = 1. Of course,
they should also check that r is not outside the set of modulo-p numbers, so
the full check becomes 1 < r < p ∧ r q = 1.

For all numbers r in the subgroup generated by g we have that r q = 1. So if
you ever need to raise number r to a power e, you only have to compute r emodq,
which can be considerably less work than computing r e directly if e is much
larger than q.

How much more efficient is the subgroup case? The large prime p is at
least 2000 bits long. In the safe-prime situation, computing a general gx takes
about 3000 multiplications. In our subgroup case, gx takes about 384 multiplies
because x can be reduced modulo q and is therefore only 256 bits long. This is
a savings of a factor of nearly eight. When p grows larger, the savings increase
further. This is the reason that subgroups are widely used.

11.7 The Size of p

Choosing the right sizes for the parameters of a DH system is difficult. Up to
now, we have been using the requirement that an attacker must spend 2128

steps to attack the system. That was an easy target for all the symmetric key
primitives. Public-key operations like the DH system are far more expensive
to start with, and the computational cost grows much more quickly with the
desired security level.

If we keep to our requirement of forcing the attacker to use 2128 steps to attack
the system, the prime p should be about 6800 bits long. In practical systems
today, that would be a real problem from a performance point of view.

There is a big difference between key sizes for symmetric primitives and
key sizes for public-key primitives like DH. Never, ever fall into the trap of
comparing a symmetric key size (such as 128 or 256 bits) to the size of a public

Chapter 11 ■ Diffie-Hellman 189

key that can be thousands of bits. Public-key sizes are always much larger than
symmetric-key sizes.2

Public-key operations are far slower than the encryption and authentication
functions we presented earlier. In most systems, the symmetric-key operations
are insignificant, whereas the public-key operations can have a real effect on
performance. We must therefore look much more closely at the performance
aspects of public-key operations.

Symmetric-key sizes are typically fixed in a system. Once you design your
system to use a particular block cipher and hash function, you also fix the key
size. That means that the symmetric key size is fixed for the life of the system.
Public-key sizes, on the other hand, are almost always variable. This makes it
much easier to change the key size. Our intent in this book is to design a system
that will be used for 30 years, and the data must be kept secure for 20 years
after it has first been processed. The symmetric key size must be chosen large
enough to protect the data up to 50 years from now. But the variable-sized
public keys only have to protect the data for the next 20 years. After all, all
keys have a limited lifetime. A public key might be valid for one year, and
should protect data for 20 more years. This means that the public key only
needs to protect data 21 years, rather than the 50 years needed for symmetric
keys. Each year, you generate a new public key, and you can choose larger
public keys as computing technology progresses.

The best estimates of how large your prime p needs to be can be found in
[85]. A prime of 2048 bits can be expected to secure data until around 2022; 3072
bits is secure until 2038; and 4096 bits until 2050. The 6800 bits we mentioned
above is derived from the formulas in [85]. That is the size of p if you want to
force the attacker to perform 2128 steps in an attack.

Be very careful with these types of predictions. There is some reasonable
basis for these numbers, but predicting the future is always dangerous. We
might be able to make some sensible predictions about key sizes for the next
10 years, but making predictions about what things will be like 50 years from
now is really rather silly. Just compare the current state of the art in computers
and cryptography with the situation 50 years ago. The predictions in [85] are
by far the best estimates we have; nevertheless, treat them with caution.

So what are we to do? As cryptographic designers, we have to choose a key
size that will be secure for at least the next 20 years. Obviously 2048 bits is
a lower bound. Larger is better, but larger keys have a significant extra cost.
In the face of so much uncertainty, we would like to be conservative. So here
is our advice: as of today, use 2048 bits as an absolute minimum. (And don’t
forget that as time passes this minimum will grow.) If at all possible from a
performance point of view, use 4096 bits, or as close to 4096 bits as you can

2This holds for the public-key schemes we discuss in this book. Other public-key schemes, such
as those based on elliptic curves, can have completely different key size parameters.

190 Part III ■ Key Negotiation

afford. Furthermore, make absolutely sure that your system can handle sizes
up to 8192 bits. This will save the day if there are unexpected developments in
attacking public-key systems. Improvements in cryptanalysis will most likely
lead to attacks on smaller key sizes. Switching to a very much larger key size
can be done while the system is in the field. It will cost some performance,
but the basic operation of the system will be preserved. This is far better than
losing all security and having to reengineer the system, which is what you
would have to do if the system could not use larger keys.

Some applications require data to be kept secret for much longer than
20 years. In these cases, you need to use the larger keys now.

11.8 Practical Rules

Here are our practical rules for setting up a subgroup you can use for the DH
protocol.

Choose q as a 256-bit prime. (There are collision-style attacks on the exponent
in DH, so all our exponents should be 256 bits long to force the attacker to
use at least 2128 operations.) Choose p as a large prime of the form Nq + 1 for
some integer N. (See Section 11.7 for a discussion of how large p should be.
Computing the corresponding range for N is trivial.) Choose a random g such
that g
= 1 and gq = 1. (The easy way to do this is to choose a random α, set
g = αN, and check g for suitability. Try another α if g fails the criteria.)

Any party receiving the subgroup description (p, q, g) should verify that:

Both p and q are prime, q is 256 bits long, and p is sufficiently large. (Don’t
trust keys that are too small.)

q is a divisor of (p − 1).

g
= 1 and gq = 1.

This should be done even if the description is provided by a trusted source.
You would be amazed at how often systems fail in some interesting way,
especially when they are under attack. Checking a set (p, q, g) takes a little time,
but in most systems the same subgroup is used for a long time, so these checks
need only be performed once.

Any time a party receives a number r that is supposed to be in the subgroup,
it should be verified that 1 < r < p and r q = 1. Note that r = 1 is not allowed.

Using these rules, we get the version of the Diffie-Hellman protocol shown
in Figure 11.3. Both parties start by checking the group parameters. Each of
them only has to do this once at start-up, not every time they run a DH
protocol. (They should do it after every reboot or reinitialization, however,
because the parameters could have changed.)

Chapter 11 ■ Diffie-Hellman 191

Alice Bob
known: (p, q, g) known: (p, q, g)
check (p, q, g) parameters check (p, q, g) parameters
x ∈R

{
1, . . . , q − 1

}

X := gx

−−−−−−−−−→
1 ?

< X ?
< p , Xq ?= 1

y ∈R
{

1, . . . , q − 1
}

Y := gy

←−−−−−−−−−
1 ?

< Y ?
< p , Yq ?= 1

k ← (Y)x k ← (X)y

Figure 11.3: Diffie-Hellman in a subgroup.

The rest of the protocol is very much the same as the original DH protocol
in Figure 11.1. Alice and Bob now use the subgroup, so the two exponents
x and y are in the range 1, . . . , q − 1. Both Alice and Bob check that the number
they receive is in the proper subgroup to avoid any small-subgroup attacks by
Eve.

The notation we use for the checks is a relational operator (such as = or <)
with a question mark above it. This means that Alice (or Bob) should check
that the relation holds. If it does, then everything is all right. If the relation is
not correct, then Alice has to assume that she is under attack. The standard
behavior is to stop the execution of the protocol, not send any other messages,
and destroy all protocol-specific data. For example, in this protocol Alice
should destroy x and Y if the last set of checks fails. See Section 13.5.5 for a
detailed discussion of how to handle these failures.

This protocol describes a secure variant of DH, but it should not be used in
exactly this form. The result k has to be hashed before it is used by the rest of
the system. See Section 14.6 for a more detailed discussion.

11.9 What Can Go Wrong?

Very few books or articles talk about the importance of checking that the
numbers you receive are in the correct subgroup. Niels first found this
problem in the Internet Key Exchange (IKE) protocol of IPsec [60]. Some of
the IKE protocols include a DH exchange. As IKE has to operate in the real
world, it has to deal with lost messages. So IKE specifies that if Bob receives
no answer, he should resend his last message. IKE does not specify how Alice
should process the message that Bob sent again. And it is easy for Alice to
make a serious mistake.

192 Part III ■ Key Negotiation

For simplicity, let us suppose Alice and Bob use the DH protocol in the
subgroup illustrated in Figure 11.3 without checking that X and Y are proper
values. Furthermore, after this exchange Alice starts using the new key k
to send an encrypted and authenticated message to Bob that contains some
further protocol data. (This is a very common situation, and similar situations
can occur in IKE.)

Here is the dangerous behavior by Alice: when she receives a resend of the
second message containing Y, she simply recomputes the key k and sends the
appropriate reply to Bob. Sounds entirely harmless, right? But the attacker Eve
can now start to play games. Let d be a small divisor of (p − 1). Eve can replace
Y by an element of order d. Alice’s key k is now limited to d possible values,
and is completely determined by Y and (x mod d). Eve tries all possible values
for (x mod d), computes the key k that Alice would have gotten, and tries to
decrypt the next message that Alice sends. If Eve guesses (x mod d) correctly,
this message will decrypt properly, and Eve has learned (x mod d).

But what if p − 1 contains a number of small factors (d1, d2, . . . , dk)? Then
Eve can run this attack repeatedly for each of these factors and learn
(x mod d1), . . . , (x mod dk). Using the general form of the Chinese Remain-
der Theorem (see Section 12.2) she can combine this knowledge to obtain
(x mod d1d2d3 · · · dk). So if the product of all small divisors of p − 1 is large, Eve
can get a significant amount of information about x. As x is supposed to be
secret, this is always a bad development. In this particular case, Eve can finish
by forwarding the original Y to Alice and letting Alice and Bob complete the
protocol. But Eve has collected enough information about x that she can now
find the key k that Alice and Bob use.

To be quite clear: this is not an attack on IKE. It is an attack on an imple-
mentation of IKE that is allowed by the standard [60]. Still, in our opin-
ion the protocol should include enough information for a competent program-
mer to create a secure implementation. Leaving this type of information out is
dangerous, as somebody somewhere will implement it the wrong way. (We
have not verified whether this attack applies to newer versions of IKE.)

For this attack to work, Eve has to be lucky enough to have a p − 1 with
sufficient small divisors. We are designing against an adversary that can
perform 2128 steps of computing. This allows Eve to take advantage of all
divisors of p − 1 up to 2128 or so. We’ve never seen a good analysis of the
probabilities of how much information Eve could get, but a quick estimate
indicates that on average Eve will be able to get approximately 128 bits of
information about x from the factors smaller than 2128. She can then attack the
unknown part of x using a collision-style attack, and as x is only 256 bits long,
this leads to a real attack. At least, it would if we didn’t check that X and Y
were in the proper subgroup.

Chapter 11 ■ Diffie-Hellman 193

The attack becomes even easier if Eve was the person selecting the subgroup
(p, q, g). She may have put the small divisors into p − 1 herself when she selected
p in the first place. Or maybe she sat on the committee that recommended
certain parameters for a standard. This isn’t as crazy as it seems. The U.S.
government, in the form of NIST, helpfully provides primes that can be used
with DSA, a signature scheme that uses subgroups like this. Other parts of that
same U.S. government (e.g., NSA, CIA, FBI) have a vested interest in being
able to break into private communications. We certainly don’t want to imply
that these primes are bad, but it is something that you would want to check
before you use them. This is easy to do; in fact, NIST published an algorithm
for choosing parameters that does not insert additional small factors, and you
can check whether the algorithm was indeed followed. But few people ever do.

In the end, the simplest solution is to check that every value you receive is
in the proper subgroup. All other ways of stopping small subgroup attacks
are much more complicated. You could try to detect the small factors of p − 1
directly, but that is way too complicated. You could require the person who
generated the parameter set to provide the factorization of p − 1, but that adds
a great deal of complexity to the whole system. Verifying that the received
values are in the right subgroup is a bit of work, but it is by far the simplest
and most robust solution.

11.10 Exercises

Exercise 11.1 Assume 200 people wish to communicate securely using
symmetric keys, one symmetric key for each pair of people. How many
symmetric keys would this system use in total?

Exercise 11.2 What are the subgroups generated by 3, 7, and 10 in the
multiplicative group of integers modulo p = 11?

Exercise 11.3 Why is a number r a square modulo p, p = 2q + 1 and p and q
both prime, if and only if r q = 1 (mod p).

Exercise 11.4 What problems, if any, could arise if Alice uses the same x and
gx for all her communications with Bob, and Bob uses the same y and gy for all
his communications with Alice?

Exercise 11.5 Alice and Bob wish to agree on a 256-bit AES key. They are
trying to decide between using 256-bit, 512-bit, or some other length DH public
keys gx and gy. What would be your recommendation to them?

C H A P T E R

12

RSA

The RSA system is probably the most widely used public-key cryptosystem
in the world. It is certainly the best known. It provides both digital signatures
and public-key encryption, which makes it a very versatile tool, and it is based
on the difficulty of factoring large numbers, a problem that has fascinated
many people over the last few millennia and has been studied extensively.

12.1 Introduction

RSA is similar to, yet very different from, Diffie-Hellman (see Chapter 11).
Diffie-Hellman (DH for short) is based on a one-way function: assuming p and
g are publicly known, you can compute (gx mod p) from x, but you cannot
compute x given gx mod p. RSA is based on a trapdoor one-way function.
Given the publicly known information n and e, it is easy to compute me mod n
from m, but not the other way around. However, if you know the factorization
of n, then it is easy to do the inverse computation. The factorization of n is the
trapdoor information. If you know it, you can invert the function; if you do
not know it, you cannot invert the function. This trapdoor functionality allows
RSA to be used both for encryption and digital signatures. RSA was invented
by Ronald Rivest, Adi Shamir, and Leonard Adleman, and first published in
1978 [105].

Throughout this chapter we will use the values p, q, and n. The values p and
q are different large primes, each on the order of a thousand bits long or more.
The value n is defined by n := pq. (An ordinary product, that is, not modulo
something.)

195

196 Part III ■ Key Negotiation

12.2 The Chinese Remainder Theorem

Instead of doing computations modulo a prime p as in the DH system, we
will be doing computations modulo the composite number n. To explain what
is going on, we will need a little more number theory about computations
modulo n. A very useful tool is the Chinese Remainder Theorem, or CRT. It is
named so because the basic version was first stated by the first-century Chinese
mathematician Sun Tzu. (Most of the math you need for DH and RSA dates
back thousands of years, so it can’t be too difficult, right?)

The numbers modulo n are 0, 1, . . . , n − 1. These numbers do not form a
finite field as they would if n were a prime. Mathematicians still write Zn

for these numbers and call this a ring, but that is a term we won’t need.
For each x in Zn, we can compute the pair (x mod p, x mod q). The Chinese
Remainder Theorem states that you can compute the inverse function: if you
know (x mod p, x mod q), you can reconstruct x.

For ease of notation, we will define (a, b) := (x mod p, x mod q).
First, we show that reconstruction is possible, then we’ll give an algorithm

to compute the original x. To be able to compute x given (a, b), we must be sure
there is not a second number x′ in Zn such that x′ mod p = a and x′ mod q = b.
If this were the case, both x′ and x would result in the same (a, b) pair, and no
algorithm could figure out which of these two numbers was the original input.

Let d := x − x′, the difference between the numbers that lead to the same (a, b)
pair. We have (d mod p) = (x − x′) mod p = (x mod p) − (x′ mod p) = a − a =
0; thus, d is a multiple of p. For much the same reason, d is a multiple of q.
This implies that d is a multiple of lcm(p, q), because lcm is, after all, the least
common multiple. As p and q are different primes, lcm(p, q) = pq = n, and thus
x − x′ is a multiple of n. But both x and x′ are in the range 0, . . . , n − 1, so x − x′

must be a multiple of n in the range −n + 1, . . . , n − 1. The only valid solution
is x − x′ = 0, or x = x′. This proves that for any given pair (a, b), there is at most
one solution for x. All we have to do now is find that solution.

12.2.1 Garner’s Formula
The most practical way of computing the solution is Garner’s formula.

x = (((a − b)(q−1 mod p)) mod p) · q + b

Here the (q−1 mod p) term is a constant that depends only on p and q. Remember
that we can divide modulo p, and therefore we can compute (1/q mod p), which
is just a different way of writing (q−1 mod p).

We don’t need to understand Garner’s formula. All we need to do is prove
that the result x is correct.

First of all, we show that x is in the right range 0, . . . , n − 1. Obviously
x ≥ 0. The part t := (((a − b)(q−1 mod p)) mod p) must be in the range

Chapter 12 ■ RSA 197

0, . . . , p − 1 because it is a modulo p result. If t ≤ p − 1, then tq ≤ (p − 1)q and
x = tq + b ≤ (p − 1)q + (q − 1) = pq − 1 = n − 1. This shows that x is in the range
0, . . . , n − 1.

The result should also be correct modulo both p and q.

x mod q = ((((a − b)(q−1 mod p)) mod p) · q + b) mod q
= (K · q + b) mod q for some K
= b mod q
= b

The whole thing in front of the multiplication by q is some integer K, but any
multiple of q is irrelevant when computing modulo q. Modulo p is a bit more
complicated:

x mod p = ((((a − b)(q−1 mod p)) mod p) · q + b) mod p
= (((a − b)q−1) · q + b) mod p
= ((a − b)(q−1q) + b) mod p
= ((a − b) + b) mod p
= a mod p
= a

In the first line, we simply expand (x mod p). In the next line, we eliminate
a couple of redundant mod p operators. We then change the order of the
multiplications, which does not change the result. (You might remember from
school that multiplication is associative, so (ab)c = a(bc).) The next step is to
observe that q−1q = 1 (mod p), so we can remove this term altogether. The rest
is trivial.

This derivation is a bit more complicated than the ones we have seen so far,
especially as we use more of the algebraic properties. Don’t worry if you can’t
follow it.

We can conclude that Garner’s formula gives a result x that is in the right
range and for which (a, b) = (x mod p, x mod q). As we already know that
there can only be one such solution, Garner’s formula solves the CRT problem
completely.

In real systems, you typically precompute the value q−1 mod p, so Garner’s
formula requires one subtraction modulo p, one multiplication modulo p, one
full multiplication, and an addition.

12.2.2 Generalizations
The CRT also works when n is the product of multiple primes that are all
different.1 Garner’s formula can be generalized to these situations, but we
won’t need that in this book.

1There are versions that work when n is divisible by the square or higher power of some primes,
but those are even more complicated.

198 Part III ■ Key Negotiation

12.2.3 Uses
So what is the CRT good for? If you ever have to do a lot of computations
modulo n, then using the CRT saves a lot of time. For a number 0 ≤ x <

n, we call the pair (x mod p, x mod q) the CRT representation of x. If we
have x and y in CRT representation, then the CRT representation of x + y
is ((x + y) mod p, (x + y) mod q), which is easy to compute from the CRT
representations of x and y. The first component (x + y) mod p can be computed
as ((x mod p) + (y mod p) mod p). This is just the sum (modulo p) of the first
half of each of the CRT representations. The second component of the result
can be computed in a similar manner.

You can compute a multiplication in much the same way. The CRT rep-
resentation of xy is (xy mod p, xy mod q), which is easy to compute from the
CRT representations. The first part (xy mod p) is computed by multiplying
(x mod p) and (y mod p) and taking the result modulo p again. The second
part is computed in the same manner modulo q.

Let k be the number of bits of n. Each of the primes p and q is about
k/2 bits long. One addition modulo n would require one k-bit addition,
perhaps followed by a k-bit subtraction if the result exceeded n. In the CRT
representation, you have to do two modulo additions on numbers half the
size. This is approximately the same amount of work.

For multiplication, the CRT saves a lot of time. Multiplying two k-bit numbers
requires far more work than twice multiplying two k/2-bit numbers. For most
implementations, CRT multiplication is twice as fast as a full multiplication.
That is a significant savings.

For exponentiations, the CRT saves even more. Suppose you have to compute
xs mod n. The exponent s can be up to k bits long. This requires about 3k/2
multiplications modulo n. Using the CRT representation, each multiplication
is less work, but there is also a second savings. We want to compute (xs mod
p, xs mod q). When computing modulo p, we can reduce the exponent s modulo
(p − 1), and similarly modulo q. So we only have to compute (x s mod (p−1) mod
p, x s mod (q−1) mod q). Each of the exponents is only k/2 bits long and requires
only 3k/4 multiplications. Instead of 3k/2 multiplications modulo n, we now
do 2 · 3k/4 = 3k/2 multiplications modulo one of the primes. This saves a factor
of 3–4 in computing time in a typical implementation.

The only costs of using the CRT are the additional software complexity and
the necessary conversions. If you do more than a few multiplications in one
computation, the overhead of these conversions is worthwhile. Most textbooks
only talk about the CRT as an implementation technique for RSA. We find
that the CRT representation makes it much easier to understand the RSA
system. This is why we explained the CRT first. We’ll soon use it to explain
the behavior of the RSA system.

Chapter 12 ■ RSA 199

12.2.4 Conclusion
In conclusion: a number x modulo n can be represented as a pair (x mod
p, x mod q) when n = pq. Conversion between the two representations is fairly
straightforward. The CRT representation is useful if you have to do many
multiplications modulo a composite number that you know the factorization
of. (You cannot use it to speed up your computations if you don’t know the
factorization of n.)

12.3 Multiplication Modulo n

Before we delve into the details of RSA, we must look at how numbers modulo
n behave under multiplication. This is somewhat different from the modulo p
case we discussed before.

For any prime p, we know that for all 0 < x < p the equation xp−1 = 1
(mod p) holds. This is not true modulo a composite number n. For RSA to
work, we need to find an exponent t such that xt = 1 mod n for (almost) all
x. Most textbooks just give the answer, which does not help you understand
why the answer is true. It is actually relatively easy to find the correct answer
by using the CRT.

We want a t such that, for almost all x, xt = 1 (mod n). This last equation
implies that xt = 1 (mod p) and xt = 1 (mod q). As both p and q are prime,
this only holds if p − 1 is a divisor of t, and q − 1 is a divisor of t. The
smallest t that has this property is therefore lcm(p − 1, q − 1) = (p − 1)(q −
1)/ gcd(p − 1, q − 1). For the rest of this chapter, we will use the convention
that t = lcm(p − 1, q − 1).

The letters p, q, and n are used by everybody, although some use capital
letters. Most books don’t use our t, but instead use the Euler totient function
φ(n). For an n of the form n = pq, the Euler totient function can be computed
as φ(n) = (p − 1)(q − 1), which is a multiple of our t. It is certainly true that
xφ(n) = 1, and that using φ(n) instead of t gives correct answers, but using t is
more precise.

We’ve skipped over one small issue in our discussion: xt mod p cannot be
equal to 1 if x mod p = 0. So the equation xt mod n = 1 cannot hold for all
values x. There are not many numbers that suffer from this deficiency; there
are q numbers with x mod p = 0 and p numbers with x mod q = 0, so the total
number of values that have this problem is p + q. Or p + q − 1, to be more
precise, because we counted the value 0 twice. This is an insignificant fraction
of the total number of values n = pq. Even better, the actual property used
by RSA is that xt+1 = x (mod n), and this still holds even for these special
numbers. Again, this is easy to see when using the CRT representation. If x = 0

200 Part III ■ Key Negotiation

(mod p), then xt+1 = 0 = x (mod p), and similarly modulo q. The fundamental
property xt+1 = x (mod n) is preserved, and holds for all numbers in Zn.

12.4 RSA Defined

We can now define the RSA system. Start by randomly choosing two different
large primes p and q, and compute n = pq. The primes p and q should be
of (almost) equal size, and the modulus n ends up being twice as long as p
and q are.

We use two different exponents, traditionally called e and d. The requirement
for e and d is that ed = 1 (mod t) where t := lcm(p − 1, q − 1) as before. Recall
that many texts write ed = 1 (mod φ(n)). We choose the public exponent
e to be some small odd value and use the extendedGCD function from
Section 10.3.5 to compute d as the inverse of e modulo t. This ensures that
ed = 1 (mod t).

To encrypt a message m, the sender computes the ciphertext c := me (mod n).
To decrypt a ciphertext c, the receiver computes cd (mod n). This is equal to
(me)d = med = mkt+1 = (mt)k · m = (1)k · m = m (mod n), where k is some value
that exists. So the receiver can decrypt the ciphertext me to get the plaintext m.

The pair (n, e) forms the public key. These are typically distributed to many
different parties. The values (p, q, t, d) are the private key and are kept secret
by the person who generated the RSA key.

For convenience, we often write c1/e mod n instead of cd mod n. The expo-
nents of a modulo n computation are all taken modulo t, because xt = 1
(mod n), so multiples of t in the exponent do not affect the result. And we
computed d as the inverse of e modulo t, so writing d as 1/e is natural. The
notation c1/e is often easier to follow, especially when multiple RSA keys are
in use. That is why we also talk about taking the e’th root of a number. Just
remember that computations of any roots modulo n require knowledge of the
private key.

12.4.1 Digital Signatures with RSA
So far, we’ve only talked about encrypting messages with RSA. One of the
great advantages of RSA is that it can be used for both encrypting messages
and signing messages. These two operations use the same computations. To
sign a message m, the owner of the private key computes s := m1/e mod n.
The pair (m, s) is now a signed message. To verify the signature, anyone who
knows the public key can verify that se = m (mod n).

As with encryption, the security of the signature is based on the fact
that the e’th root of m can only be computed by someone who knows the
private key.

Chapter 12 ■ RSA 201

12.4.2 Public Exponents

The procedure described so far has one problem. If e has a common factor
with t = lcm(p − 1, q − 1), there is no solution for d. So we have to choose p, q,
and e such that this situation does not occur. This is more of a nuisance than a
problem, but it has to be dealt with.

Choosing a short public exponent makes RSA more efficient, as fewer
computations are needed to raise a number to the power e. We therefore try to
choose a small value for e. In this book, we will choose a fixed value for e, and
choose p and q to satisfy the conditions above.

You have to be careful that the encryption functions and digital signature
functions don’t interact in undesirable ways. You don’t want it to be possible
for an attacker to decrypt a message c by convincing the owner of the private
key to sign c. After all, signing the ‘‘message’’ c is the same operation as
decrypting the ciphertext c. The encoding functions presented later in this
book will prevent this. These encodings are remotely akin to block cipher
modes of operation; you should not use the basic RSA operation directly.
But even then, we still don’t want to use the same RSA operation for both
functions. We could use different RSA keys for encryption and authentication,
but that would increase complexity and double the amount of key material.

Another approach, which we use here, is to use two different public
exponents on the same n. We will use e = 3 for signatures and e = 5 for
encryption. This decouples the systems because cube roots and fifth roots
modulo n are independent of each other. Knowing one does not help the
attacker to compute the other [46].

Choosing fixed values for e simplifies the system and also gives predictable
performance. It does impose a restriction on the primes that you can use, as
both p − 1 and q − 1 cannot be multiples of 3 or 5. It is easy to check for this
when you generate the primes in the first place.

The rationale for using 3 and 5 is simple. These are the smallest suitable
values.2 We choose the smaller public exponent for signatures, because sig-
natures are often verified multiple times, whereas any piece of data is only
encrypted once. It therefore makes more sense to let the signature verification
be the more efficient operation.

Other common values used for e are 17 and 65537. We prefer the smaller
values, as they are more efficient. There are some minor potential problems
with the small public exponents, but we will eliminate them with our encoding
functions further on.

It would also be nice to have a small value for d, but we have to disappoint
you here. Although it is possible to find a pair (e, d) with a small d, using a

2You could in principle use e = 2, but that would introduce a lot of extra complexities.

202 Part III ■ Key Negotiation

small d is insecure [127]. So don’t play any games by choosing a convenient
value for d.

12.4.3 The Private Key
It is extremely difficult for the attacker to find any of the values of the private
key p, q, t, or d if she knows only the public key (n, e). As long as n is large
enough, there is no known algorithm that will do this in an acceptable time.
The best solution we know of is to factor n into p and q, and then compute t
and d from that. This is why you often hear about factoring being so important
for cryptography.

We’ve been talking about the private key consisting of the values p, q, t,
and d. It turns out that knowledge of any one of these values is sufficient to
compute all the other three. This is quite instructive to see.

We assume that the attacker knows the public key (n, e), as that is typically
public information. If she knows p or q, things are easy. Given p she can
compute q = n/p, and then she can compute t and d just as we did above.

What if the attacker knows (n, e, t)? First of all, t = (p − 1)(q − 1)/ gcd(p −
1, q − 1), but as (p − 1)(q − 1) is very close to n, it is easy to find gcd(p − 1, q − 1)
as it is the closest integer to n/t. (The value gcd(p − 1, q − 1) is never very large
because it is very unlikely that two random numbers share a large factor.)
This allows the attacker to compute (p − 1)(q − 1). She can also compute
n − (p − 1)(q − 1) + 1 = pq − (pq − p − q + 1) + 1 = p + q. So now she has both
n = pq and s := p + q. She can now derive the following equations:

s = p + q
s = p + n/p

ps = p2 + n
0 = p2 − ps + n

The last is just a quadratic equation in p that she can solve with high-school
math. Of course, once the attacker has p, she can compute all the other private
key values as well.

Something similar happens if the attacker knows d. In all our systems, e
will be very small. As d < t, the number ed − 1 is only a small factor times t.
The attacker can just guess this factor, compute t, and then try to find p and
q as above. If she fails, she just tries the other possibilities. (There are faster
techniques, but this one is easy to understand.)

In short, knowing any one of the values p, q, t, or d lets the attacker compute
all the others. It is therefore reasonable to assume that the owner of the private
key has all four values. Implementations only need to store one of these
values, but often store several of the values they need to perform the RSA
decryption operation. This is implementation dependent, and is not relevant
from a cryptographic point of view.

Chapter 12 ■ RSA 203

If Alice wants to decrypt or sign a message, she obviously must know d.
As knowing d is equivalent to knowing p and q, we can safely assume that
she knows the factors of n and can therefore use the CRT representation for
her computations. This is nice, because raising a number to the power d is the
most expensive operation in RSA, and using the CRT representation saves a
factor of 3–4 work.

12.4.4 The Size of n
The modulus n should be the same size as the modulus p that you would use
in the DH case. See Section 11.7 for the detailed discussion. To reiterate: the
absolute minimum size for n is 2048 bits or so if you want to protect your data
for 20 years. This minimum will slowly increase as computers get faster. If you
can afford it in your application, let n be 4096 bits long, or as close to this size as
you can manage. Furthermore, make sure that your software supports values
of n up to 8192 bits long. You never know what the future will bring, and it
could be a lifesaver if you can switch to using larger keys without replacing
software or hardware.

The two primes p and q should be of equal size. For a k-bit modulus n, you
can just generate two random k/2-bit primes and multiply them. You might
end up with a k − 1-bit modulus n, but that doesn’t matter much.

12.4.5 Generating RSA Keys
To pull everything together, we present two routines that generate RSA keys
with the desired properties. The first one is a modification of the generate-
LargePrime function of Section 10.4. The only functional change is that we
require that the prime satisfies p mod 3
= 1 and p mod 5
= 1 to ensure that we
can use the public exponents 3 and 5. Of course, if you want to use a different
fixed value for e, you have to modify this routine accordingly.

function generateRSAPrime
input: k Size of the desired prime, in number of bits.
output: p A random prime in the interval 2k−1, . . . , 2k − 1 subject to p mod

3
= 1 ∧ p mod 5
= 1.

Check for a sensible range.
assert 1024 ≤ k ≤ 4096
Compute maximum number of attempts.
r ← 100k
repeat

r ← r − 1
assert r > 0

204 Part III ■ Key Negotiation

Choose n as a random k-bit number.
n ∈R 2k−1, . . . , 2k − 1
Keep on trying until we find a prime.

until n mod 3
= 1 ∧ n mod 5
= 1 ∧ isPrime(n)
return n

Instead of specifying a full range in which the prime should fall, we only
specify the size of the prime. This is a less-flexible definition, but somewhat
simpler, and it is sufficient for RSA. The extra requirements are in the loop
condition. A clever implementation will not even call isPrime(n) if n is
not suitable modulo 3 or 5, as isPrime can take a significant amount of
computations.

So why do we still include the loop counter with the error condition? Surely,
now that the range is large enough, we will always find a suitable prime?
We’d hope so, but stranger things have happened. We are not worried about
getting a range with no primes in it—we’re worried about a broken prng that
always returns the same composite result. This is, unfortunately, a common
failure mode of random number generators, and this simple check makes
generateRSAPrime safe from misbehaving prngs. Another possible failure
mode is a broken isPrime function that always claims that the number is
composite. Of course, we have more serious problems to worry about if any
of these functions is misbehaving.

The next function generates all the key parameters.

function generateRSAKey
input: k Size of the modulus, in number of bits.
output: p, q Factors of the modulus.

n Modulus of about k bits.
d3 Signing exponent.
d5 Decryption exponent.

Check for a sensible range.
assert 2048 ≤ k ≤ 8192
Generate the primes.
p ← generateRSAPrime(�k/2�)
q ← generateRSAPrime(�k/2�)
A little test just in case our prng is bad
assert p
= q
Compute t as lcm(p − 1, q − 1).
t ← (p − 1)(q − 1)/GCD(p − 1, q − 1)
Compute the secret exponents using the modular inversion feature of the extended

GCD algorithm.
g, (u, v) ← extendedGCD(3, t)

Chapter 12 ■ RSA 205

Check that the GCD is correct, or we don’t get an inverse at all.
assert g = 1

Reduce u modulo t, as u could be negative and d3 shouldn’t be.
d3 ← u mod t

And now for d5.
g, (u, v) ← extendedGCD(5, t)
assert g = 1
d5 ← u mod t
return p, q, pq, d3, d5

Note that we’ve used the fixed choices for the public exponents, and that
we generate a key that can be used both for signing (e = 3) and for encryption
(e = 5).

12.5 Pitfalls Using RSA

Using RSA as presented so far is very dangerous. The problem is the mathe-
matical structure. For example, if Alice digitally signs two messages m1 and
m2, then Bob can compute Alice’s signature on m3 := m1m2 mod n. After all,
Alice has computed m1/e

1 and m1/e
2 and Bob can multiply the two results to get

(m1m2)1/e.
Another problem arises if Bob encrypts a very small message m with Alice’s

public key. If e = 5 and m < 5
√

n, then me = m5 < n, so no modular reduction
ever takes place. The attacker Eve can recover m by simply taking the fifth root
of m5, which is easy to do because there are no modulo reductions involved.
A typical situation in which this could go wrong is if Bob tries to send an AES
key to Alice. If she just takes the 256-bit value as an integer, then the encrypted
key is less than 2256·5 = 21280, which is much smaller than our n. There is never
a modulo reduction, and Eve can compute the key by simply computing the
fifth root of the encrypted key value.

One of the reasons we have explained the theory behind RSA in such detail
is to teach you some of the mathematical structure that we encounter. This
very same structure invites many types of attack. We’ve mentioned some
simple ones in the previous paragraph. There are far more advanced attacks,
based on techniques for solving polynomial equations modulo n. All of them
come down to a single thing: it is very bad to have any kind of structure in the
numbers that RSA operates on.

The solution is to use a function that destroys any available structure.
Sometimes this is called a padding function, but this is a misnomer. The word
padding is normally used for adding additional bytes to get a result of the right

206 Part III ■ Key Negotiation

length. People have used various forms of padding for RSA encryption and
signatures, and quite a few times this has resulted in attacks on their designs.
What you need is a function that removes as much structure as possible. We’ll
call this the encoding function.

There are standards for this, most notably PKCS #1 v2.1 [110]. As usual, this
is not a single standard. There are two RSA encryption schemes and two RSA
signature schemes, each of which can take a variety of hash functions. This
is not necessarily bad, but from a pedagogical perspective we don’t like the
extra complexity. We’ll therefore present some simpler methods, even though
they might not have all the features of some of the PKCS methods. And, as
we mentioned before in the case of AES, there are many advantages to using
a standardized algorithm in practice. For example, for encryption you might
use RSA-OAEP [9], and for signatures you might use RSA-PSS [8].

The PKCS #1 v2.1 standard also demonstrates a common problem in tech-
nical documentation: it mixes specification with implementation. The RSA
decryption function is specified twice; once using the equation m = cd mod n
and once using the CRT equations. These two computations have the same
result: one is merely an optimized implementation of the other. Such imple-
mentation descriptions should not be part of the standard, as they do not
produce different behavior. They should be discussed separately. We don’t
want to criticize this PKCS standard in particular; it is a very widespread
problem that you find throughout the computer industry.

12.6 Encryption

Encrypting a message is the canonical application of RSA, yet it is almost
never used in practice. The reason is simple: the size of the message that can
be encrypted using RSA is limited by the size of n. In real systems, you cannot
even use all the bits, because the encoding function has an overhead. This
limited message size is too impractical for most applications, and because the
RSA operation is quite expensive in computational terms, you don’t want to
split a message into smaller blocks and encrypt each of them with a separate
RSA operation.

The solution used almost everywhere is to choose a random secret key K,
and encrypt K with the RSA keys. The actual message m is then encrypted with
key K using a block cipher or stream cipher. So instead of sending something
like ERSA(m), you send ERSA(K), EK(m). The size of the message is no longer
limited, and only a single RSA operation is required, even for large messages.
You have to transmit a small amount of extra data, but this is usually a minor
price to pay for the advantages you get.

We will use an even simpler method of encryption. Instead of choosing a K
and encrypting K, we choose a random r ∈ Zn and define the bulk encryption
key as K := h(r) for some hash function h. Encrypting r is done by simply raising

Chapter 12 ■ RSA 207

it to the fifth power modulo n. (Remember, we use e = 5 for encryption.) This
solution is simple and secure. As r is chosen randomly, there is no structure
in r that can be used to attack the RSA portion of the encryption. The hash
function in turn ensures that no structure between different r’s propagates to
structure in the K’s, except for the obvious requirement that equal inputs must
yield equal outputs.

For simplicity of implementation, we choose our r’s in the range 0, . . . , 2k − 1,
where k is the largest number such that 2k < n. It is easier to generate a random
k-bit number than to generate a random number in Zn, and this small deviation
from the uniform distribution is harmless in this situation.

Here is a more formal definition:

function encryptRandomKeyWithRSA
input: (n, e) RSA public key, in our case e = 5.
output: K Symmetric key that was encrypted.

c RSA ciphertext.

Compute k.
k ← �log2 n�
Choose a random r such that 0 ≤ r < 2k − 1.
r ∈R

{
0, . . . , 2k − 1

}

K ← SHAd-256(r)
c ← r e mod n
return (K, c)

The receiver computes K = h(c1/e mod n) and gets the same key K.

function decryptRandomKeyWithRSA
input: (n, d) RSA private key with e = 5.

c Ciphertext.
output: K Symmetric key that was encrypted.

assert 0 ≤ c < n
This is trivial.
K ← SHAd-256(c1/e mod n)
return K

We previously dealt extensively with how to compute c1/e given the private
key, so we won’t discuss that here again. Just don’t forget to use the CRT for a
factor of 3–4 speed-up.

Here is a good way to look at the security. Let’s assume that Bob encrypts a
key K for Alice, and Eve wants to know more about this key. Bob’s message
depends only on some random data and on Alice’s public key. So at worst this
message could leak data to Eve about K, but it cannot leak any data about any
other secret, such as Alice’s private key. The key K is computed using a hash
function, and we can pretend that the hash function is a random mapping.
(If we cannot treat the hash function as a random mapping, it doesn’t satisfy

208 Part III ■ Key Negotiation

our security requirement for hash functions.) The only way to get information
about the output of a hash function is to know most of the input. That means
having information about r. But if RSA is secure—and we have to assume that
since we have chosen to use it—then it is impossible to get any significant
amount of information about a randomly chosen r given just (r e mod n). This
leaves the attacker with a lot of uncertainty about r, and consequently, no
knowledge about K.

Suppose the key K is later revealed to Eve, maybe due to a failure of another
component of the system. Does this reveal anything about Alice’s private key?
No. K is the output of a hash function, and it is impossible for Eve to derive
any information about the inputs to the hash function. So even if Eve chose
c in some special way, the K she acquires does not reveal anything about r.
Alice’s private key was only used to compute r, so Eve cannot learn anything
about Alice’s private key either.

This is one of the advantages of having a hash function in the decryptRan-
domKeyWithRSA function. Suppose it just returned c1/e mod n. This routine
could then be used to play all kinds of games. Suppose some other part of
the system had a weakness and Eve learned the least significant bit of the
output. Eve could then send specially chosen values c1, c2, c3, . . . to Alice and
get the least significant bits of c1/e

1 , c1/e
2 , c1/e

3 , These answers have all kinds of
algebraic properties, and it is quite conceivable that Eve could learn something
useful from a situation like this. The hash function h in decryptRandomKey-
WithRSA destroys all mathematical structure. Learning one bit from the
output K gives Eve almost no information about c1/e. Even the full result K
divulges very little useful information; the hash function is not invertible.
Adding the hash function here makes the RSA routines more secure against
failures in the rest of the system.

This is also the reason why decryptRandomKeyWithRSA does not check
that the r we compute from c falls in the range 0, . . . , 2k − 1. If we checked
this condition, we would have to handle the error that could result. As error
handling always leads to different behavior, it is quite probable that Eve could
detect whether this error occurred. This would provide Eve with a function
that reveals information: Eve could choose any value c and learn whether
c1/e mod n < 2k. Eve cannot compute this property without Alice’s help, and we
don’t want to help Eve if we can avoid it. By not checking the condition, we at
most generate a nonsense output, and that is something that can happen in any
case, as c might have been corrupted without resulting in an invalid r value.3

An aside: there is a big difference between revealing a random pair (c, c1/e),
and computing c1/e for a c chosen by someone else. Anybody can produce pairs

3Placing more restrictions on r does not stop the problem of nonsensical outputs. Eve can always
use Alice’s public key and a modified encryptRandomKeyWithRSA function to send Alice
encryptions of nonsensical keys.

Chapter 12 ■ RSA 209

of the form (c, c1/e). All you do is choose a random r, compute the pair (r e, r),
and then set c := r e. There is nothing secret about pairs like that. But if Alice
is kind enough to compute c1/e for a c she receives from Eve, Eve can choose
c values with some special properties—something she can’t do for the (c, c1/e)
pairs she generates herself. Don’t provide this extra service for your attacker.

12.7 Signatures

For signatures, we have to do a bit more work. The problem is that the message
m we want to sign can have a lot of structure to it, and we do not want any
structure in the number we compute the RSA root on. We have to destroy the
structure.

The first step is to hash the message. So instead of a variable-length message
m, we deal with a fixed-size value h(m) where h is a hash function. If we use
SHAd-256, we get a 256-bit result. But n is much bigger than that, so we cannot
use h(m) directly.

The simple solution is to use a pseudorandom mapping to expand h(m)
to a random number s in the range 0, . . . , n − 1. The signature on m is then
computed as s1/e (mod n). Mapping h(m) to a modulo n value is a bit of work
(see the discussion in Section 9.7). In this particular situation, we can safely
simplify our problem by mapping h(m) to a random element in the range
0, . . . , 2k − 1, where k is the largest number such that 2k < n. Numbers in the
range 0, . . . , 2k − 1 are easy to generate because we only need to generate k
random bits. In this particular situation, this is a safe solution, but don’t use
it just anywhere. There are many situations in cryptography where this will
break your entire system.

We will use the generator from our Fortuna prng from Chapter 9. Many
systems use the hash function h to build a special little random number
generator for this purpose, but we’ve already defined a good one. Besides, you
need the prng to choose the primes to generate the RSA keys, so you have the
prng in the software already.

This results in three functions—one to map the message to s, one to sign the
message, and one to verify the signature.

function MsgToRSANumber
input: n RSA public key, modulus.

m Message to be converted to a value modulo n.
output: s A number modulo n.

Create a new prng generator.
G ← InitializeGenerator()
Seed it with the hash of the message.

210 Part III ■ Key Negotiation

ReSeed(G, SHAd-256(m))
Compute k.
k ← �log2 n�
x ← PseudoRandomData(G, �k/8)
As usual, we treat the byte-string x as an integer using the LSByte first convention.

The modulo reduction can be implemented with a simple and on the
last byte of x.

s ← x mod 2k

return s

function SignWithRSA
input: (n, d) RSA private key with e = 3.

m Message to be signed.
output: σ Signature on m.

s ← MsgToRSANumber(n, m)
σ ← s1/e mod n
return σ

The letter σ , or sigma, is often used for signatures because it is the Greek
equivalent of our letter s. By now you should know how to compute s1/e mod n,
given the private key.

function VerifyRSASignature
input: (n, e) RSA public key with e = 3.

m Message that is supposed to be signed.
σ Signature on the message.

s ← MsgToRSANumber(n, m)
assert s = σ e mod n

Of course, in a real application there will be some action to take if the
signature verification fails. We’ve just written an assertion here to indicate that
normal operations should not proceed. A signature failure should be taken
like any other failure in a cryptographic protocol: as a clear signal that you are
under active attack. Don’t send any replies unless you absolutely have to, and
destroy all the material you are working on. The more information you send
out, the more information you give the attacker.

The security argument for our RSA signatures is similar to that of the
RSA encryptions. If you ask Alice to sign a bunch of messages m1, m2, . . . , mi,
then you are getting pairs of the form (s, s1/e), but the s values are effectively
random. As long as the hash function is secure, you can only affect h(m) by
trial and error. The random generator is again a random mapping. Anyone
can create pairs of the form (s, s1/e) for random s values, so this provides no
new information that helps the attacker forge a signature. However, for any

Chapter 12 ■ RSA 211

particular message m, only someone who knows the private key can compute
the corresponding (s, s1/e) pair, because s must be computed from h(m), then
s1/e must be computed from s. This requires the private key. Therefore, anyone
who verifies the signature knows that Alice must have signed it.

This brings us to the end of our treatment of RSA, and to the end of the
math-heavy part of this book. We will be using DH and RSA for our key
negotiation protocol and the PKI, but that only uses the math we have already
explained. No new mathematics will be introduced.

12.8 Exercises

Exercise 12.1 Let p = 89, q = 107, n = pq, a = 3, and b = 5. Find x in Zn such
that a = x (mod p) and b = x (mod q).

Exercise 12.2 Let p = 89, q = 107, n = pq, x = 1796, and y = 8931. Compute
x + y (mod n) directly. Compute x + y (mod n) using CRT representations.

Exercise 12.3 Let p = 89, q = 107, n = pq, x = 1796, and y = 8931. Compute
xy (mod n) directly. Compute xy (mod n) using CRT representations.

Exercise 12.4 Let p = 83, q = 101, n = pq, and e = 3. Is (n, e) a valid RSA
public key? If so, compute the corresponding private RSA key d. If not, why
not?

Exercise 12.5 Let p = 79, q = 89, n = pq, and e = 3. Is (n, e) a valid RSA public
key? If so, compute the corresponding private RSA key d. If not, why not?

Exercise 12.6 To speed up decryption, Alice has chosen to set her private
key d = 3 and computes e as the inverse of d modulo t. Is this a good design
decision?

Exercise 12.7 Does a 256-bit RSA key (a key with a 256-bit modulus) provide
strength similar to that of a 256-bit AES key?

Exercise 12.8 Let p = 71, q = 89, n = pq, and e = 3. First find d. Then compute
the signature on m1 = 5416, m2 = 2397, and m3 = m1m2 (mod n) using the basic
RSA operation. Show that the third signature is equivalent to the product of
the first two signatures.

C H A P T E R

13
Introduction to Cryptographic

Protocols

Cryptographic protocols consist of an exchange of messages between partici-
pants. We’ve already seen a simple cryptographic protocol in Chapter 11.

Creating secure protocols is challenging. The main problem is that as a
designer or implementer, you are not in control. Up to now we have been
designing a system, and have had control over the behavior of various parts.
Once you start communicating with other parties, you have no control over
their behavior. The other party has a different set of interests than you do, and
he could deviate from the rules to try to get an advantage. When working on
protocols, you must assume that you are dealing with the enemy.

13.1 Roles

Protocols are typically described as being executed by Alice and Bob, or
between a customer and a merchant. Names like ‘‘Alice,’’ ‘‘Bob,’’ ‘‘customer,’’
and ‘‘merchant’’ are not really meant to identify a particular individual or
organization. They identify a role within the protocol. If Mr. Smith wants
to communicate with Mr. Jones, he might run a key agreement protocol.
Mr. Smith could take the role of Alice, and Mr. Jones the role of Bob. The
next day the roles might be reversed. It is important to keep in mind that
a single entity can take on any of the roles.1 This is especially important to
remember when you analyze the protocol for security. We’ve already seen the

1In protocols with three or more participants, it is even possible for a single person to take on
more than one role at the same time.

213

214 Part III ■ Key Negotiation

man-in-the-middle attack on the DH protocol. In that attack, Eve takes on the
roles of both Alice and of Bob. (Of course, Eve is just another role, too.)

13.2 Trust

Trust is the ultimate basis for all dealings that we have with other people.
If you don’t trust anybody with anything at all, why bother interacting with
them? For example, buying a candy bar requires a basic level of trust. The
customer has to trust the merchant to provide the candy and give proper
change. The merchant has to trust the customer to pay. Both have recourse if
the other party misbehaves. Shoplifters are prosecuted. Cheating merchants
risk bad publicity, lawsuits, and getting punched in the nose.

There are several sources of trust:

Ethics Ethics has a large influence in our society. Although very few, if any,
people behave ethically all the time, most people behave ethically most
of the time. Attackers are few. Most people pay for their purchases, even
when it would be laughably easy to steal them.

Reputation Having a ‘‘good name’’ is very important in our society. People
and companies want to protect their reputation. Often the threat of bad
publicity gives them an incentive to behave properly.

Law In civilized societies, there is a legal infrastructure that supports lawsuits
and prosecution of people who misbehave. This gives people an incentive
to behave properly.

Physical Threat Another incentive to behave properly is the fear of harm if
you cheat and are caught. This is one of the sources of trust for drug
deals and other illegal trades.

MAD A Cold War term: Mutually Assured Destruction. In milder forms,
it is the threat to do harm to both yourself and the other party. If
you cheat your friend, she might break off the friendship, doing you
both harm. Sometimes you see two companies in a MAD situation,
especially when they file patent infringement lawsuits against each
other.

All of these sources are mechanisms whereby a party has an incentive not
to cheat. The other party knows this incentive, and therefore feels he can trust
his opponent to some extent. This is why these incentives all fail when you
deal with completely irrational people: you can’t trust them to act in their own
best interest, which undermines all these mechanisms.

Chapter 13 ■ Introduction to Cryptographic Protocols 215

It is hard to develop trust over the Internet. Suppose Alice lives abroad and
connects to the ACME website. ACME has almost no reason to trust Alice; of the
mechanisms of trust we mentioned, only ethics remains. Legal recourse against
private individuals abroad is almost impossible, and prohibitively expensive
in most cases. You can’t effectively harm their reputation or threaten them,
even with MAD.

There is nevertheless a basis of trust between Alice and ACME, because
ACME has a reputation to protect. This is important to remember when you
design a protocol for e-commerce. If there are any failure modes (and there
always are), the failure should be to ACME’s advantage, because ACME has an
incentive to settle the matter properly by manual intervention.2 If the failure is
to Alice’s advantage, the issue is less likely to be settled properly. Furthermore,
ACME will be vulnerable to attackers who try to induce the failure mode and
then profit by it.

Trust is not a black-and-white issue. It is not that you either trust someone
or you don’t trust him. You trust different people to different degrees. You
might trust an acquaintance with $100 but not with your lottery ticket that
just won a $5,000,000 prize. We trust the bank to keep our money safe, but we
get receipts and copies of canceled checks because we don’t fully trust their
administration. The question ‘‘Do you trust him?’’ is incomplete. It should be
‘‘Do you trust him with X?’’

13.2.1 Risk
Trust is fundamental to business, but it is usually expressed as risk rather than
trust. Risk can be seen as the converse of trust. Risks are evaluated, compared,
and traded in many forms.

When working on cryptographic protocols, it is easier to talk in terms of
trust than in terms of risks. But a lack of trust is simply a risk, and that
can sometimes be handled by standard risk-management techniques such as
insurance. We talk about trust when we design protocols. Always keep in
mind that business people think and talk in terms of risks. You’ll have to
convert between the two perspectives if you want to be able to talk to them.

13.3 Incentive

The incentive structure is another fundamental component of any analysis
of a protocol. What are the goals of the different participants? What would
they like to achieve? Even in real life, analyzing the incentive structure gives
insightful conclusions.

2Almost all telephone, mail, and electronic commerce to individuals follows this rule by having
the customer pay for the order before it is shipped.

216 Part III ■ Key Negotiation

Several times every week we get press reports that announce things like,
‘‘New research has shown that’’ Our first reaction is always to ask: who
paid for the research? Research whose results are advantageous to the party
who paid for it is always suspect. Several factors are at play here. First, the
researchers know what their customer wants to hear, and know they can
get repeat contracts if they produce ‘‘good’’ results. This introduces a bias.
Second, the sponsor of the research is not going to publish any negative
reports. Publishing only the positive reports introduces another bias. Tobacco
companies published ‘‘scientific’’ reports that nicotine was not addictive.
Microsoft pays for research that ‘‘proves’’ that open source software is bad in
some way. Don’t ever trust research that supports the company that paid for it.

The authors are personally quite familiar with these pressures. During our
years as consultants, we performed many security evaluations for paying
customers. We were often harsh—the average product we evaluated was
quite bad—and our evaluations often had significantly negative components.
That didn’t always make us popular with our customers. One of them even
called Bruce and said: ‘‘Stop your work and send me your bill. I’ve found
someone who is cheaper and who writes better reports.’’ Guess which meaning
of ‘‘better’’ was intended here?

We see exactly the same problem in other areas. As we wrote the first edition
of this book, the press was filled with stories about the accounting and banking
industries. Analysts and accountants were writing reports favorable for their
clients rather than unbiased evaluations. We blame the incentive structure that
gave these people a reason to bias their reports. Looking at the incentives is
quite instructive, and something we’ve done for years. With a bit of practice,
it is surprisingly easy, and it yields valuable insights.

If you pay your management in stock options, you give them the following
incentive structure: increase the share price over the next three years and make
a fortune; decrease the share price, and get a golden handshake. It is a ‘‘Heads I
win a lot, tails I win a little’’ incentive, so guess what some managers do? They
go for a high-risk, short-term strategy. If they get the opportunity to double
the amount they gamble they will always take it, because they will only collect
the winnings and never pay the loss. If they can inflate the share price for a
few years with bookkeeping tricks, they will, because they can cash out before
they are found out. Some of the gambles fail, but others pay the bills.

A similar thing happened with the savings and loan industry in the United
States in the 1980s. The federal government liberalized the rules, allowing
S&Ls to invest their money more freely. At the same time, the government
guaranteed the deposits. Now look at the incentive structure. If the investments
pay off, the S&L makes a profit, and no doubt management gets a nice
bonus. If the investments lose money, the federal government pays off the
depositors. Not surprisingly, a bunch of S&Ls lost a lot of money on high-risk
investments—and the federal government picked up the bill.

Chapter 13 ■ Introduction to Cryptographic Protocols 217

Fixing the incentive structure is often relatively easy. For example, instead
of the company itself paying for the audit, the stock exchange can arrange and
pay for the audit of the books. Give the auditors a significant bonus for every
error they find and you’ll get a much more accurate report.

Examples of undesirable incentive structures abound. Divorce lawyers have
an incentive to make the divorce very acrimonious, as they are paid for every
hour spent fighting over the estate. It is a safe bet that they will advise you to
settle as soon as the legal fees exceed the value of the estate.

In American society, lawsuits are common. If an accident happens, every
participant has a great incentive to hide, deny, or otherwise avoid the blame.
Strict liability laws and huge damage awards might seem good for society at
first, but it greatly hinders our ability to figure out why the accident happened,
and how we can avoid it in future. Liability laws that are supposed to protect
consumers make it all but impossible (as an example) for a company like
Firestone to admit there is a problem with their product so we can all learn
how to build better tires.

Cryptographic protocols interact in two ways with incentive structures.
First, they rely on incentive structures. Some electronic payment protocols do
not stop the merchant from cheating the customer, but provide the customer
with proof of the cheating. This works because it creates a cryptographic
forensic trail. The merchant now has an incentive not to have people out there
with proof they were cheated. The proof could be used either in a court case
or just to damage the reputation of the merchant.

Second, cryptographic protocols change the incentive structure. They make
certain things impossible, removing them from the incentive structure. They
can also open up new possibilities and new incentives. Once you have online
banking, you create an incentive for a thief to break into your computer and
steal your money by that method.

At first, incentives look as if they are mostly materialistic, but that is only part
of it. Many people have nonmaterialistic motives. In personal relationships,
the most fundamental incentives have little to do with money. Keep an open
mind, and try to understand what drives people. Then create your protocols
accordingly.

13.4 Trust in Cryptographic Protocols

The function of cryptographic protocols is to minimize the amount of trust
required. This is important enough to repeat. The function of cryptographic
protocols is to minimize the amount of trust required. This means minimizing
both the number of people who need to trust each other and the amount of
trust they need to have.

218 Part III ■ Key Negotiation

One powerful tool for designing cryptographic protocols is the paranoia
model. When Alice takes part in a protocol, she assumes that all other
participants are conspiring together to cheat her. This is really the ultimate
conspiracy theory. Of course, each of the other participants is making the same
assumption. This is the default model in which all cryptographic protocols are
designed.

Any deviations from this default model must be explicitly documented. It
is surprising how often this step is overlooked. We sometimes see protocols
used in situations where the required trust is not present. For example,
most secure websites use the SSL protocol. The SSL protocol requires trusted
certificates. But a certificate is easy to get. The result is that the user is
communicating securely with a website, but he doesn’t know which website
he is communicating with. Numerous phishing scams against PayPal users
have exploited this vulnerability, for example.

It is very tempting not to document the trust that is required for a particular
protocol, as it is often ‘‘obvious.’’ That might be true to the designer of the
protocol, but like any module in the system, the protocol should have a clearly
specified interface, for all the usual reasons.

From a business point of view, the documented trust requirements also list
the risks. Each point of required trust implies a risk that has to be dealt with.

13.5 Messages and Steps

A typical protocol description consists of a number of messages that are sent
between the participants of the protocol and a description of the computations
that each participant has to do.

Almost all protocol descriptions are done at a very high level. Most of the
details are not described. This allows you to focus on the core functionality of
the protocol, but it creates a great danger. Without careful specifications of all
the actions that each participant should take, it is extremely difficult to create
a safe implementation of the protocol.

Sometimes you see protocols specified with all the minor details and checks.
Such specifications are often so complicated that nobody fully understands
them. This might help an implementer, but anything that is too complicated
cannot be secure.

The solution is, as always, modularization. With cryptographic protocols,
as with communication protocols, we can split the required functionality into
several protocol layers. Each layer works on top of the previous layer. All
the layers are important, but most of the layers are the same for all protocols.
Only the topmost layer is highly variable, and that is the one you always find
documented.

Chapter 13 ■ Introduction to Cryptographic Protocols 219

13.5.1 The Transport Layer

Network specialists must forgive us for reusing one of their terms here. For
cryptographers, the transport layer is the underlying communication system
that allows parties to communicate. This consists of sending strings of bytes
from one participant to another. How this is done is irrelevant for our purposes.
What we as cryptographers care about is that we can send a string of bytes
from one participant to the other. You can use UDP packets, a TCP data stream,
e-mail, or any other method. In many cases, the transport layer needs some
additional encoding. For example, if a program executes multiple protocols
simultaneously, the transport layer must deliver the message to the right
protocol execution. This might require an extra destination field of some sort.
When using TCP, the length of the message needs to be included to provide
message-oriented services over the stream-oriented TCP protocol.

To be quite clear, we expect that transport layer to transmit arbitrary strings
of bytes. Any byte value can occur in the message. The length of the string is
variable. The string received should, of course, be identical to the string that
was sent; deleting trailing zero bytes, or any other modification, is not allowed.

Some transport layers include things like magic constants to provide an
early detection of errors or to check the synchronization of the TCP stream. If
the magic constant is not correct on a received message, the rest of the message
should be discarded.

There is one important special case. Sometimes we run a cryptographic
protocol over a cryptographically secured channel like the one we designed in
Chapter 7. In cases like that, the transport layer also provides confidentiality,
authentication, and replay protection. That makes the protocol much easier to
design, because there are far fewer types of attack to worry about.

13.5.2 Protocol and Message Identity

The next layer up provides protocol and message identifiers. When you receive
a message, you want to know which protocol it belongs to and which message
within that protocol it is.

The protocol identifier typically contains two parts. The first part is the
version information, which provides room for future upgrades. The second
part identifies which particular cryptographic protocol the message belongs
to. In an electronic payment system, there might be protocols for withdrawal,
payment, deposit, refund, etc. The protocol identifier avoids confusion among
messages of different protocols.

The message identifier indicates which of the messages of the protocol in
question this is. If there are four messages in a protocol, you don’t want there
to be any confusion about which message is which.

220 Part III ■ Key Negotiation

Why do we include so much identifying information? Can’t an attacker forge
all of this? Of course he can. This layer doesn’t provide any protection against
active forgery; rather, it detects accidental errors. It is important to have good
detection of accidental errors. Suppose you are responsible for maintaining a
system, and you suddenly get a large number of error messages. Differentiating
between active attacks and accidental errors such as configuration and version
problems is a valuable service.

Protocol and message identifiers also make the message more self-contained,
which makes much of the maintenance and debugging easier. Cars and air-
planes are designed to be easy to maintain. Software is even more complex—all
the more reason why it should be designed for ease of maintenance.

Probably the most important reason to include message identifying infor-
mation has to do with the Horton Principle. When we use authentication (or
a digital signature) in a protocol, we typically authenticate several messages
and data fields. By including the message identification information, we avoid
the risk that a message will be interpreted in the wrong context.

13.5.3 Message Encoding and Parsing
The next layer is the encoding layer. Each data element of the message has to
be converted to a sequence of bytes. This is a standard programming problem
and we won’t go into too much detail about that here.

One very important point is the parsing. The receiver must be able to parse
the message, which looks like a sequence of bytes, back into its constituent
fields. This parsing must not depend on contextual information.

A fixed-length field that is the same in all versions of the protocol is easy
to parse. You know exactly how long it is. The problems begin when the size
or meaning of a field depends on some context information, such as earlier
messages in the protocol. This is an invitation to trouble.

Many messages in cryptographic protocols end up being signed or otherwise
authenticated. The authentication function authenticates a string of bytes,
and usually it is simplest to authenticate the message at the level of the
transport layer. If the interpretation of a message depends on some contextual
information, the signature or authentication is ambiguous. We’ve broken
several protocols based on this type of failure.

A good way to encode fields is to use Tag-Length-Value or TLV encoding.
Each field is encoded as three data elements. The tag identifies the field in
question, the length is the length of the value encoding, and the value is the
actual data to be encoded. The best-known TLV encoding is ASN.1 [64], but it
is incredibly complex and we shy away from it. A subset of ASN.1 could be
very useful.

Chapter 13 ■ Introduction to Cryptographic Protocols 221

Another alternative is XML. Forget the XML hype; we’re only using XML
as a data encoding system. As long as you use a fixed Document Template
Definition (DTD), the parsing is not context-dependent, and you won’t have
any problems.

13.5.4 Protocol Execution States
In many implementations, it is possible for a single computer to take part in
several protocol executions at the same time. To keep track of all the protocols
requires some form of protocol execution state. The state contains all the
information necessary to complete the protocol.

Implementing protocols requires some kind of event-driven programming,
as the execution has to wait for external messages to arrive before it can
proceed. This can be implemented in various ways, such as using one thread
or process per protocol execution, or using some kind of event dispatch system.

Given an infrastructure for event-driven programming, implementing a
protocol is relatively straightforward. The protocol state contains a state
machine that indicates the type of message expected next. As a general rule,
no other type of message is acceptable. If the expected type of message arrives,
it is parsed and processed according to the rules.

13.5.5 Errors
Protocols always contain a multitude of checks. These include verifying the
protocol type and message type, checking that it is the expected type of
message for the protocol execution state, parsing the message, and performing
the cryptographic verifications specified. If any of these checks fail, we have
encountered an error.

Errors need very careful handling, as they are a potential avenue of attack.
The safest procedure is not to send any reply to an error and immediately delete
the protocol state. This minimizes the amount of information the attacker can
get about the protocol. Unfortunately, it makes for an unfriendly system, as
there is no indication of the error.

To make systems usable, you often need to add error messages of some
sort. If you can get away with it, don’t send an error message to the other
parties in the protocol. Log an error message on a secure log so the system
administrator can diagnose the problem. If you must send an error message,
make it as uninformative as possible. A simple ‘‘There was an error’’ message
is often sufficient.

One dangerous interaction is between errors and timing attacks. Eve can
send a bogus message to Alice and wait for her error reply. The time it takes

222 Part III ■ Key Negotiation

Alice to detect the error and send the reply often provides detailed information
about what was wrong and exactly where it went wrong.

Here is a good illustration of the dangers of these interactions. Years ago,
Niels worked with a commercially available smart card system. One of the
features was a PIN code that was needed to enable the card. The four-digit PIN
code was sent to the card, and the card responded with a message indicating
whether the card was now enabled or not. Had this been implemented well, it
would have taken 10,000 tries to exhaust all the possible PIN codes. The smart
card allowed five failed PIN attempts before it locked up, after which it would
require special unlocking by other means. The idea was that an attacker who
didn’t know the PIN code could make five attempts to guess the four-digit
PIN code, which gave her a 1 in 2000 probability of guessing the PIN code
before the card locked up.

The design was good, and similar designs are widely used today. A 1 in
2000 chance is good enough for many applications. But unfortunately, the
programmer of that particular smart card system made a problematic design
decision. To verify the four-digit PIN code, the program first checked the first
digit, then the second, etc. The card reported the PIN code failure as soon
as it detected that one of the digits was wrong. The weakness was that the
time it took the smart card to send the ‘‘wrong PIN’’ error depended on how
many of the digits of the PIN were correct. A smart attacker could measure
this time and learn a lot of information. In particular, the attacker could find
out at which position the first wrong digit was. Armed with that knowledge,
it would take the attacker only 40 attempts to exhaustively search the PIN
space. (After 10 attempts the first digit would have to be right, after another
10 attempts the second, etc.) After five tries, her chances of finding the correct
PIN code rose to 1 in 143. That is much better for the attacker than the 1 in
2000 chance she should have had. If she got 20 tries, her chances rose to 60%,
which is a lot more than the 0.2% she should have had.

Even worse, there are certain situations where having 20 or 40 tries is not
infeasible. Smart cards that lock up after a number of failed PIN tries always
reset the counter once the correct PIN has been used, so the user gets another
five tries to type the correct PIN the next time. Suppose your roommate has
a smart card like the one described above. If you can get at your roommate’s
smart card, you can run one or two tries before putting the smart card back.
Wait for him to use the card for real somewhere, using the correct PIN and
resetting the failed-PIN attempt counter in the smart card. Now you can do
one or two more tries. Soon you’ll have the whole PIN code because it takes at
most 40 tries to find it.

Error handling is too complex to give you a simple set of rules. This is
something we as a community do not know enough about yet. At the moment,
the best advice we can give is to be very careful and reveal as little information
as possible.

Chapter 13 ■ Introduction to Cryptographic Protocols 223

13.5.6 Replay and Retries

A replay attack occurs when the attacker records a message and then later
resends that same message. Message replays have to be protected against.
They can be a bit tricky to detect, as the message looks exactly like a proper
one. After all, it is a proper one.

Closely related to the replay attack is the retry. Suppose Alice is performing
a protocol with Bob, and she doesn’t get a response. There could be many
reasons for this, but one common one is that Bob didn’t receive Alice’s last
message and is still waiting for it. This happens in real life all the time, and we
solve this by sending another letter or e-mail, or repeating our last remark. In
automated systems this is called a retry. Alice retries her last message to Bob
and again waits for a reply.

So Bob can receive replays of messages sent by the attacker and retries sent
by Alice. Somehow, Bob has to deal properly with them and ensure correct
behavior without introducing a security weakness.

Sending retries is relatively simple. Each participant has a protocol execution
state of some form. All you need to do is keep a timer and send the last message
again if you do not receive an answer within a reasonable time. The exact time
limit depends on the underlying communication infrastructure. If you use
UDP packets (a protocol that uses IP packets directly), there is a reasonable
probability that the message will get lost, and you want a short retry time, on
the order of a few seconds. If you send your messages over TCP, then TCP
retries any data that was not received properly using its own timeouts. There is
little reason to do a retry at the cryptographic protocol level, and most systems
that use TCP do not do this. Nevertheless, for the rest of this discussion we
are going to assume that retries are being used, as the general techniques of
handling received retries also work even if you never send them.

When you receive a message, you have to figure out what to do with it. We
assume that each message is recognizable, so that you know which message
in the protocol it is supposed to be. If it is the message you expect, there is
nothing out of the ordinary and you just follow the protocol rules. Suppose it
is a message from the ‘‘future’’ of the protocol; i.e., one that you only expect at
a later point in time. This is easy; ignore it. Don’t change your state, don’t send
a reply, just drop it and do nothing. It is probably part of an attack. Even in
weird protocols where it could be part of a sequence of errors induced by lost
messages, ignoring a message has the same effect as the message being lost in
transit. As the protocol is supposed to recover from lost messages, ignoring a
message is always a safe solution.

That leaves the case of ‘‘old’’ messages: messages you already processed
in the protocol you are running. There are three situations in which this
could occur. In the first one, the message you receive has the same message
identification as the previous one you responded to, and it is identical in

224 Part III ■ Key Negotiation

content to the message you responded to, too. In this case, the message is
probably a retry, so you send exactly the same reply you sent the first time.
Note that the reply should be the same. Don’t recompute the reply with a
different random value, and don’t just assume that the message you get is
identical to the first one you replied to. You have to check.

The second case is when you receive a message that has the same message
identification as the message you last responded to, but the message contents
are different. For example, suppose in the DH protocol Bob receives the first
message from Alice, and then later receives another message that claims to
be the first message in the protocol, but which contains different data while
still passing the relevant integrity checks. This situation is indicative of an
attack. No retry would ever create this situation, as the resent message is never
different from the first try. Either the message you just received is bogus, or
the earlier one you responded to is bogus. The safe choice is to treat this as a
protocol error, with all the consequences we discussed. (Ignoring the message
you just received is safe, but it means that fewer forms of active attacks are
detected as such. This has a detrimental effect on the detection and response
parts of the security system.)

The third case is when you receive a message that is even older than the
previous message you responded to. There is not much you can do with this.
If you still have a copy of the original message you received at that phase in
the protocol, you can check if it is identical to that one. If it is, ignore it. If it is
different, you have detected an attack and should treat it as a protocol error.
Many implementations do not store all the messages that were received in a
protocol execution, which makes it impossible to know whether the message
you receive now is or is not identical to the one originally processed. The
safe option is to ignore these messages. You’d be surprised how often this
actually happens. Sometimes messages get delayed for a long time. Suppose
Alice sends a message that is delayed. After a few seconds, she sends a retry
that does arrive, and both Alice and Bob continue with the protocol. Half a
minute later, Bob receives the original message. This is a situation in which
Bob receives a copy of—in protocol terms—a very old message.

Things get more complicated if you have a protocol in which there are more
than two participants. These exist, but are beyond the scope of this book. If you
ever work on a multiparty protocol, think carefully about replay and retries.

One final comment: it is impossible to know whether the last message of a
protocol arrived or not. If Alice sends the last message to Bob, then she will
never get a confirmation that it arrived. If the communication link is broken
and Bob never receives the last message, then Bob will retry the previous
message but that will not reach Alice either. This is indistinguishable to Alice
from the normal end of the protocol. You could add an acknowledgment from

Chapter 13 ■ Introduction to Cryptographic Protocols 225

Bob to Alice to the end of the protocol, but then this acknowledgment becomes
the new last message and the same problem arises. Cryptographic protocols
have to be designed in a way that this ambiguity does not lead to insecure
behavior.

13.6 Exercises

Exercise 13.1 Describe a protocol you engage in on a regular basis. This
might be ordering a drink at a local coffee shop or boarding an airplane. Who
are the explicit actors directly involved in this protocol? Are there other actors
involved peripherally in this protocol, such as during the setup phase? For
simplicity, list at most 5 actors. Create a matrix, where each row is labeled by
an actor and each column is labeled by an actor. For each cell, describe how
the actor in the row trusts the actor in the column.

Exercise 13.2 Consider the security of your personal computer. List the
attackers who might break into your computer, their incentives, and the
associated costs and risks to the attacker.

Exercise 13.3 Repeat exercise 13.2, except for a bank instead of your personal
computer.

Exercise 13.4 Repeat exercise 13.2, except for a computer at the Pentagon
instead of your personal computer.

Exercise 13.5 Repeat exercise 13.2, except for a computer belonging to a
criminal organization instead of your personal computer.

C H A P T E R

14

Key Negotiation

Finally, we are ready to tackle the key negotiation protocol. The purpose of
this protocol is to derive a shared key that can then be used for the secure
channel we defined in Chapter 7.

Complete protocols get quite complicated, and it can be confusing to present
the final protocol all at once. Instead, we will present a sequence of protocols,
each of which adds a bit more functionality. Keep in mind that the intermediate
protocols are not fully functional, and will have various weaknesses.

There are different methods for designing key negotiation protocol, some
with supporting proofs of security and some without. We designed our pro-
tocol from the ground up—not only because it leads to a cleaner explanation,
but also because it allows us to highlight nuances and challenges at each stage
of the protocol’s design.

14.1 The Setting

There are two parties in the protocol: Alice and Bob. Alice and Bob want to
communicate securely. They will first conduct the key negotiation protocol to
set up a secret session key k, and then use k for a secure channel to exchange
the actual data.

For a secure key negotiation, Alice and Bob must be able to identify each
other. This basic authentication capability is the subject of the third part of
this book. For now, we will just assume that Alice and Bob can authenticate
messages to each other. This basic authentication can be done using RSA

227

228 Part III ■ Key Negotiation

signatures (if Alice and Bob know each other’s keys or are using a PKI), or
using a shared secret key and a MAC function.

But wait! Why do a key negotiation if you already have a shared secret
key? There are many reasons why you might want to do this. First of all, the
key negotiation can decouple the session key from the existing (long-term)
shared key. If the session key is compromised (e.g., because of a flawed secure
channel implementation), the shared secret still remains safe. And if the shared
secret key is compromised after the key negotiation protocol has been run, the
attacker who learns the shared secret key still does not learn the session key
negotiated by the protocol. So yesterday’s data is still protected if you lose
your key today. These are important properties: they make the entire system
more robust.

There are also situations in which the shared secret key is a relatively weak
one, like a password. Users don’t like to memorize 30-letter passwords, and
tend to choose much simpler ones. A standard attack is the dictionary attack,
where a computer searches through a large number of simple passwords.
Although we do not consider them here, some key negotiation protocols can
turn a weak password into a strong key.

14.2 A First Try

There are standard protocols you might use to do key negotiation. A well-
known one based on the DH protocol is the Station-to-Station protocol [34].
Here we will walk you through the design of a different protocol for illustrative
purposes. We’ll start with the simplest design we can think of, shown in
Figure 14.1. This is just the DH protocol in a subgroup with some added
authentication. Alice and Bob perform the DH protocol using the first two
messages. (We’ve left out some of the necessary checks, for simplicity.) Alice
then computes an authentication on the session key k and sends it to Bob, who
checks the authentication. Similarly, Bob sends an authentication of k to Alice.

We don’t know the exact form of the authentication at the moment. Remem-
ber, we said we assume that Alice and Bob can authenticate messages to each
other. So Bob is able to check AuthA(k) and Alice is able to check AuthB(k).
Whether this is done using digital signatures or using a MAC function is not
our concern here. This protocol merely turns an authentication capability into
a session key.

There are some problems with this protocol:

The protocol is based on the assumption that (p, q, g) are known to both
Alice and Bob. Choosing constants for these values is a bad idea.

It uses four messages, whereas it is possible to achieve the goal using
only three.

Chapter 14 ■ Key Negotiation 229

Alice Bob
Known: (p, q, g) Known: (p, q, g)
x ∈R

{
1, . . . , q − 1

}

X := gx

−−−−−−−−−−−−→
y ∈R

{
1, . . . , q − 1

}

Y := gy

←−−−−−−−−−−−−
k ← Yx k ← Xy

AuthA(k)−−−−−−−−−−−−→
check AuthA(k)

AuthB(k)←−−−−−−−−−−−−
check AuthB(k)

Figure 14.1: A first attempt at key negotiation.

The session key is used as an input to the authentication function. This
is not a problem if the authentication function is strong, but suppose
the authentication function leaks a few bits about the session key. That
would be bad. It certainly would require a new analysis of the entire
protocol. A good rule of thumb is to use a secret only for a single thing.
Here k will be used as a session key, so we don’t want to use it as an
argument to the authentication function.

The two authentication messages are too similar. If, for example, the
authentication function is a simple MAC using a secret key known
to both Alice and Bob, then Bob could just send the authentication
value he received from Alice, and he would not need the secret key to
complete the protocol. Thus Alice would not be convinced by the last
authentication message.

Implementations have to be careful not to use k until the authentication
messages have been exchanged. This is not a major issue and is a rather
simple requirement, but you wouldn’t believe what sometimes happens
when people try to optimize a program.

We will fix all of these problems over the course of this chapter.

14.3 Protocols Live Forever

We’ve emphasized the importance of designing systems to withstand the
future. This is even more important for protocols. If you limit the size of
database fields to 2000 bytes, it might be a problem for some users, but you

230 Part III ■ Key Negotiation

can remove the limit in the next version. Not so for protocols. Protocols
are run between different participants, and every new version needs to be
interoperable with the old version. Modifying a protocol and still keeping it
compatible with older versions is rather complicated. Before you know it, you
have to implement several versions of the protocol, with a system to decide
which version to use.

The protocol version switch becomes a point of attack, of course. If an older
protocol is less secure, an attacker has an incentive to force you to use that
older protocol. You’d be surprised at how many systems we’ve seen that suffer
from what’s known as a version-rollback attack.

It is of course impossible to know all the future requirements, so it might
be necessary to define a second version of a protocol at some point. However,
the cost of having several protocol versions is high, especially in overall
complexity.

Successful protocols live almost forever (we don’t care about unsuccessful
ones). It is extremely difficult to completely remove a protocol from the world.
So it is even more important to design protocols to be future-proof. This is why
we can’t specify a fixed set of DH parameters for our key negotiation protocol.
Even if we chose them to be very large, there is always a danger that future
cryptanalytical improvements might force us to change them.

14.4 An Authentication Convention

Before we go on, we will introduce an authentication convention. Protocols
often have many different data elements, and it can be hard to figure out exactly
which data elements need to be authenticated. Some protocols break because
they neglect to authenticate certain data fields. We use a simple convention to
solve these problems.

In our protocols, every time a party sends an authentication, the authentica-
tion data consists of all the data exchanged so far: all the previous messages,
and all the data fields that precede the authentication in the authenticator’s
message. The authenticator will also cover (be computed over) the identities of
the communicants. In the protocol shown in Figure 14.1, Alice’s authenticator
would not be on k, but on Alice’s identifier, Bob’s identifier, X, and Y. Bob’s
authenticator would cover Alice’s identifier, Bob’s identifier, X, Y, and AuthA.

This convention removes many avenues of attack. It also costs very little.
Cryptographic protocols don’t exchange that much data, and authentication
computations almost always start by hashing the input string. Hash functions
are so fast that the extra cost is insignificant.

This convention also allows us to shorten the notation. Instead of writ-
ing something like AuthA(X, Y) we simply write AuthA. As the data to

Chapter 14 ■ Key Negotiation 231

be authenticated is specified by the convention, we no longer need to
write it down explicitly. All further protocols in this book will use this
convention.

Just as a reminder: authentication functions only authenticate a string
of bytes. Each string of bytes to be authenticated must start with a unique
identifier that identifies the exact point in the protocol where this authenticator
is used. Also, the encoding of the previous messages and the data fields
into this string of bytes must be such that the messages and fields can
be recovered from the string without further context information. We’ve
already talked about this in detail, but it is an important point that is easily
overlooked.

14.5 A Second Attempt

How do we fix the problems of the previous protocol? We don’t want to use a
constant DH parameter set, so we’ll let Alice choose it and send it to Bob. We’ll
also collapse the four messages into two, as shown in Figure 14.2. Alice starts
by choosing DH parameters and her DH contribution, and sends it all to Bob
with an authentication. Bob has to check that the DH parameters are properly
chosen and that X is valid. (See Chapter 11 for details of these checks.) The rest
of the protocol is similar to the previous version. Alice receives Y and AuthB,
checks them, and computes the DH result.

Alice Bob
Choose suitable (p, q, g)
x ∈R

{
1, . . . , q − 1

}

(p, q, g), X := gx,
AuthA−−−−−−−−−−−−→

Check (p, q, g), X, AuthA

y ∈R
{

1, . . . , q − 1
}

Y := gy, AuthB←−−−−−−−−−−−−
Check Y, AuthB

k ← Yx k ← Xy

Figure 14.2: A second attempt at key negotiation.

We no longer have fixed DH parameters. We use only two messages, we
don’t use the authentication key directly in any way, and our authentication
convention ensures that the strings being authenticated are not similar.

232 Part III ■ Key Negotiation

But now we have some new problems:

What do we do if Bob wants a larger DH prime than Alice? Perhaps Bob
has stricter security policies and thinks the DH prime chosen by Alice
isn’t secure enough. Bob will have to abort the protocol. Maybe he could
send an error message along the lines of ‘‘Require DH prime to be at least
k bits long,’’ but that gets messy and complicated. Alice would have to
restart the protocol with new parameters.

There is a problem with the authentication. Bob isn’t sure he is talking to
Alice at all. Anybody can record the first message that Alice sends and
then later send it to Bob. Bob thinks the message comes from Alice (after
all, the authentication checked), and finishes the protocol, thinking he
shares a key k with Alice. The attacker doesn’t learn k, as he doesn’t know
x, and without k the attacker cannot break into the rest of the system that
uses k. But Bob’s logs will show a completed authenticated protocol with
Alice, and that is a problem by itself, as it provides erroneous information
to investigating administrators.

Bob’s problem is called a lack of ‘‘liveness.’’ He isn’t sure that Alice is
‘‘alive,’’ and that he’s not talking to a replaying ghost. The traditional way to
solve this is to make sure that Alice’s authenticator covers a random element
chosen by Bob.

14.6 A Third Attempt

We will fix these problems with a few more changes. Instead of Alice choosing
the DH parameters, she will simply send her minimal requirements to Bob, and
Bob will choose the parameters. This does increase the number of messages
to three. (It turns out that most interesting cryptographic protocols require at
least three messages. We don’t know why, they just do.) Bob only sends a
single message: the second one. This message will contain his authenticator,
so Alice should send a randomly chosen element in the first message. We use
a random nonce for this.

This leads to the protocol shown in Figure 14.3. Alice starts by choosing s,
the minimal size of the prime p she wants to use. She also chooses a random
256-bit string as nonce Na and sends them both to Bob. Bob chooses a suitable
DH parameter set and his random exponent, and sends the parameters, his DH
contribution, and his authenticator to Alice. Alice completes the DH protocol
as usual with the added authenticator.

There is one more problem to be solved. The final result k is a variable-sized
number. Other parts of the system might find this difficult to work with.
Furthermore, k is computed using algebraic relations, and leaving algebraic

Chapter 14 ■ Key Negotiation 233

structure in a cryptographic system always scares us. There are a few places
where you absolutely need such structure, but we avoid it wherever possible.
The danger of algebraic structure is that an attacker might find some way
of exploiting it. Mathematics can be an extremely powerful tool. Over the
past few decades, we have seen many new proposals for public-key systems,
almost all of which have been broken—mostly due to the algebraic structure
they contained. Always remove any algebraic structure that you can.

Alice Bob
s ← min p size
Na ∈R 0, . . . , 2256 − 1

s, Na−−−−−−−−−−−−→
Choose (p, q, g)

x ∈R
{

1, . . . , q − 1
}

(p, q, g), X := gx,
AuthB←−−−−−−−−−−−−

Check (p, q, g), X, AuthB

y ∈R
{

1, . . . , q − 1
}

Y := gy, AuthA−−−−−−−−−−−−→
Check Y, AuthA

k ← Xy k ← Yx

Figure 14.3: A third attempt at key negotiation.

The obvious solution is to hash the final key. This reduces it to a fixed size,
and also destroys any remaining algebraic structure.

14.7 The Final Protocol

The final protocol is shown in short form in Figure 14.4. This is the form that is
easiest to read and understand. However, we’ve left a lot of verification steps
out of the protocol to make it easy to read and to focus on the key properties.
We simply write ‘‘Check (p, q, g),’’ which stands for several verifications. To
show you all the required cryptographic checks, the long form of the protocol
is given in Figure 14.5.

Bob needs to choose a suitable size for p. This depends on the minimum
size required by Alice and his own required minimum size. Of course, Bob
should ensure that the value of s is reasonable. We don’t want Bob to be
required to start generating 100,000-bit primes just because he received an

234 Part III ■ Key Negotiation

unauthenticated message with a large value for s in it. Similarly, Alice should
not have to start checking very large primes just because Bob sent them.
Therefore, both Alice and Bob limit the size of p. Using a fixed maximum
limits flexibility; if cryptanalytical progress suddenly forces you to use larger
primes, then a fixed maximum is going to be a real problem. A configurable
maximum brings with it all the problems of a configuration parameter that
almost nobody understands. We’ve chosen to use a dynamic maximum. Both
Alice and Bob refuse to use a prime that is more than twice as long as the prime
they would prefer to use. A dynamic maximum provides a nice upgrade path
and avoids excessively large primes. You can argue about whether the choice
of the factor two is best. Maybe you should use three; it doesn’t matter much.

Alice Bob
s ← min p size
Na ∈R 0, . . . , 2256 − 1

s, Na−−−−−−−−−−−−→
Choose (p, q, g)

x ∈R
{

1, . . . , q − 1
}

(p, q, g), X := gx,
AuthB←−−−−−−−−−−−−

Check (p, q, g), X, AuthB

y ∈R
{

1, . . . , q − 1
}

Y := gy, AuthA−−−−−−−−−−−−→
Check Y, AuthA

k ← SHAd-256(Xy) k ← SHAd-256(Yx)

Figure 14.4: The final protocol in short form.

The rest of the protocol is just an expansion of the earlier short form. If Bob
and Alice are smart, they’ll both use caches of suitable DH parameters. This
saves Bob from having to generate new DH parameters every time, and it
saves Alice having to check them every time. Applications can even use a fixed
set of DH parameters, or encode them as defaults in a configuration file, in
which case you don’t have to send them explicitly. A single DH parameter set
identifier would be enough. But be careful when optimizing. Optimizations
can end up modifying the protocol enough to break it. There are no simple
rules we can give you to check if an optimization breaks a protocol or not.
Protocol design is still more an art than a science, and there are no hard rules
to live by.

Chapter 14 ■ Key Negotiation 235

Alice Bob
sa ← min p size
Na ∈R 0, . . . , 2256 − 1

sa, Na−−−−−−−−−−−−→
sb ← min p size
s ← max(sa, sb)

s ?≤ 2 · sb

Choose (p, q, g) with log2 p ≥ s − 1
x ∈R

{
1, . . . , q − 1

}

(p, q, g), X := gx,
AuthB←−−−−−−−−−−−−

Check AuthB

sa − 1 ?≤ log2 p ?≤ 2 · sa

255 ?≤ log2 q ?≤ 256
Check p, q both prime
q ?| (p − 1) ∧ g ?
= 1 ∧ gq ?= 1
X ?
= 1 ∧ Xq ?= 1
y ∈R

{
1, . . . , q − 1

}

Y := gy, AuthA−−−−−−−−−−−−→
Check AuthA

Y ?
= 1 ∧ Yq ?= 1
k ← SHAd-256(Xy) k ← SHAd-256(Yx)

Figure 14.5: The final protocol in long form.

14.8 Different Views of the Protocol

There are a number of instructive ways to look at a protocol like this. There
are a few properties that the protocol should have, and we can look at why the
protocol provides them all.

14.8.1 Alice’s View
Let’s look at the protocol from Alice’s point of view. She receives a single mes-
sage from Bob. She’s sure this message is from Bob because it is authenticated,
and the authentication includes her random nonce Na. There is no way anyone
could forge this message or replay an old message.

236 Part III ■ Key Negotiation

Alice checks that the DH parameters are properly chosen, showing that
the DH protocol has all its expected properties. So when she keeps y secret
and sends out Y, she knows that only persons who know an x such that
gx = X can compute the resulting key k. This is the basic DH protocol prop-
erty. Bob authenticated X, and Alice trusts Bob to only do this when he is
following the protocol. Thus, Bob knows the appropriate x, and is keeping it
secret. Therefore, Alice is sure that only Bob knows the final key k that she
derives.

So Alice is convinced she is really talking to Bob, and that the key she derives
can be known only to her and Bob.

14.8.2 Bob’s View
Now let’s look at Bob’s side. The first message he receives gives him almost
no useful information; it basically states that someone out there has chosen a
value sa and some random bits Na.

The third message (the second one Bob receives) is different. This is a
message that definitely came from Alice, because Alice authenticated it, and
we assumed at the outset that Bob can verify an authentication by Alice. The
authentication includes X, a random value chosen by Bob, so the third message
is not a replay but has been authenticated by Alice specifically for this protocol
run. Also, Alice’s authentication covers the first message that Bob received, so
now he knows that the first message was proper, too.

Bob knows the DH parameters are safe; after all, he chose them. So just
like Alice, he knows that only someone who knows a y such that gy = Y can
compute the final key k. But Alice authenticated the Y she sent, and Bob trusts
Alice, so she is the only person who knows the corresponding y. This convinces
Bob that Alice is the only other person who can compute k.

14.8.3 Attacker’s View
Finally, we look at the protocol from the viewpoint of an attacker. If we just
listen in on the communications, we see all the messages that Alice and Bob
exchange. But the key k is computed using the DH protocol, so as long as
the DH parameters are safe, a passive attack like this is not going to reveal
anything about k. In other words: we’ll have to try an active attack.

One instructive exercise is to look at each data element and try to change
it. Here we are quickly stopped by the two authentications. Alice’s final
authentication covers all the data that was exchanged between Alice and Bob.
That means we can’t change any data elements, other than to try a replay
attack of a prerecorded protocol run. But the nonce and the random X value
stop any replay attempts.

Chapter 14 ■ Key Negotiation 237

That doesn’t mean we can’t try to play around. We could, for example,
change sa to a larger value. As long as this larger value is acceptable to
Bob, most of the protocol would complete normally. There are just three
problems. First of all, increasing sa isn’t an attack because it only makes the
DH prime larger, and therefore the DH parameters stronger. The second and
third problems are the two authentications, which will both fail.

There are some other things that might look like attacks at first. For example,
suppose Alice sends Bob sa and Na. Bob sends sa and Na to Charlie. Charlie
replies to Bob with (p, q, g), X, and AuthC. Bob now turns this around and
forwards (p, q, g) and X to Alice, along with a new authenticator AuthB that
he computes. Alice replies to Bob with Y and AuthA. Bob then sends Y and a
new authenticator AuthB that he computes to Charlie. What’s the result of all
this? Alice thinks she’s sharing a key k with Bob when in fact she’s sharing it
with Charlie. And Charlie thinks he’s sharing a key with Bob when he’s in fact
sharing it with Alice. Is this an attack? Not really. Notice that Bob could just
do the normal key negotiation with both Alice and Charlie, and then forward
all the messages on the secure channel (decrypting each message he receives
from Alice and re-encrypting it to Charlie, and vice-versa). This has the same
effect; Alice thinks she is communicating with Bob, and Charlie thinks he is
communicating with Bob, but they are sending messages to each other instead.
And in this scenario Bob knows more (and can do more) than if he ran the
‘‘attack.’’ It is true that Alice might send a message to Charlie that makes
Charlie believe that Bob agreed to something, but that can only be to Bob’s
detriment. And an attack that harms the attacker is not one we worry about.

In the real world, you will find many protocols where there are unauthen-
ticated data elements. Most designers wouldn’t bother authenticating sa in
our protocol, because changing it would not lead to an attack. (Both Alice
and Bob independently verify that the size of p is large enough for them.)
Allowing attackers to play around is always a bad idea. We don’t want to give
them any more tools than necessary. And we can certainly imagine a situation
where not authenticating sa could be dangerous. For example, assume that
Bob prefers to use DH parameters from a list built into the program, and only
generates new parameters when necessary. As long as Alice and Bob choose
to use DH prime sizes that are still in the list, Bob never generates a new
parameter set. But this also means that Bob’s parameter generation code and
Alice’s parameter verification code are never used and therefore unlikely to
be properly tested. A bug in the parameter generation and testing code could
remain hidden until an attacker increases sa. Yes, this is an unlikely scenario,
but there are thousands of unlikely scenarios that are all bad for security. And
thousands of low-probability risks add up to a high-probability risk. This is
why we are so paranoid about stopping any type of attack anytime we can.
It gives us defense in depth.

238 Part III ■ Key Negotiation

14.8.4 Key Compromise
So what happens if some other part of the system is compromised? Let’s have
a look.

If Alice merely loses her authentication key without it becoming known
to an attacker, she simply loses the ability to run this protocol. She can still
use session keys that were already established. This is very much how you’d
expect the protocol to behave. The same holds for Bob if he loses his key.

If Alice loses the session key, without it becoming known to an attacker, she
will have to run the key negotiation protocol again with Bob to establish a new
session key.

Things get worse if an attacker manages to learn a key. If Alice’s authen-
tication key is compromised, the attacker can impersonate Alice from that
moment on until the time that Bob is informed and stops accepting Alice’s
authentications. This is an unavoidable consequence. If you lose your car keys,
anyone who finds them can use the car. That is one of the main functions of
keys: they allow access to certain functions. This protocol does have the desir-
able property that past communications between Alice and Bob still remain
secret. Even knowing Alice’s authentication key doesn’t let the attacker find
the session key k for a protocol that has already finished, even if the attacker
recorded all the messages. This is called forward secrecy.1 The same properties
hold with regard to Bob’s authentication key.

Finally, we consider the situation where the session key is compromised.
The key k is the hash of gxy, where both x and y are randomly chosen.
This provides no information about any other key. It certainly provides no
information about Alice’s or Bob’s authentication keys. The value of k in one
protocol run is completely independent of the k in another protocol run (at
least, it is if we assume that Alice and Bob use a good prng).

Our protocol offers the best possible protection against key compromises.

14.9 Computational Complexity of the Protocol

Let’s have a look at the computational complexity of our solution. We’ll assume
that the DH parameter selection and verification are all cached, so we don’t
count them in the workload of a single protocol run. That leaves the following
computations, which Alice and Bob must each perform:

Three exponentiations in the DH subgroup.

One authentication generation.

1You sometimes see the term perfect forward secrecy, or PFS, but we don’t use words like ‘‘perfect’’
because it never is.

Chapter 14 ■ Key Negotiation 239

One authentication verification.

Various relatively efficient operations, such as random number genera-
tion, comparisons, and hash functions.

If symmetric-key authentication is used, the run time of the protocol is
dominated by the DH exponentiations. Let’s look at how much work that is.
Bob and Alice each have to do three modular exponentiations with a 256-bit
exponent. This requires about 1150 modular multiplications.2 To get an idea
of how much work this really is, we’ll compare this to the computational
cost of an RSA signature where the RSA modulus and the DH prime are
the same size. For an s-bit modulus, the signature algorithm requires 3s/2
multiplications if you do not use the CRT (Chinese Remainder Theorem).
Using the CRT representation saves a factor of four, so the cost of an RSA
signature on s-bit numbers is similar to the cost of doing 3s/8 multiplications.
This leads us to an interesting conclusion: RSA signatures are relatively slower
than DH computations when the moduli are large, and relatively faster when
the moduli are small. The break-even point is around 3000 bits. This is because
DH always uses 256-bit exponents, and for RSA the exponent grows with the
modulus size.

We conclude that for the public-key sizes we use, the DH computations cost
roughly the same as an RSA signature computation. The DH operations are
still the dominant factors in the computations for the protocol, but the cost is
quite reasonable.

If RSA signatures are used for the authentication, the computational load
more or less doubles. (We can ignore RSA verifications as they are very
fast.) This still isn’t excessive. CPU speeds are rapidly increasing, and in
most practical implementations you’ll see that communications delays and
overhead take up more time than the computations.

14.9.1 Optimization Tricks
There are a few optimizations that can be applied to the DH operations.
Using addition chain heuristics, each exponentiation can be done using fewer
multiplications. Furthermore, Alice computes both Xq and Xy. You can use
addition sequence heuristics to compute these two results simultaneously and
save about 250 multiplications. See Bos [18] for a detailed discussion.

There are also various tricks that make it faster to generate a random y and
compute gy, but these tricks require so much extra system complexity that
we’d rather not use them.

2This is for the simple binary exponentiation algorithm. A better-optimized algorithm reduces
this to less than 1000 multiplications.

240 Part III ■ Key Negotiation

14.10 Protocol Complexity

This protocol is also an excellent example of why protocol design is so
hideously difficult. Even a simple protocol like this quickly expands to a full
page, and we didn’t even include all the rules for DH parameter generation or
the checks for the authentication scheme that are unknown at our abstraction
level. Yet it is already difficult to keep track of everything that goes on. More
complicated protocols get much larger. One particular smart card payment
system that Niels worked on had a dozen or so protocols specified in 50 pages
of symbols and protocol specifications, and that was using a proprietary,
highly compact notation! There were 50 more densely written pages needed
to cover the security-critical implementation issues.

Full documentation of a set of cryptographic protocols can run into hundreds
of pages. Protocols quickly get too complicated to keep in your head, and that
is dangerous. Once you don’t understand it all, it is almost inevitable that a
weakness slips in. The above-mentioned project was probably too complex to
be fully understood, even by the designers.

A few years later Niels worked with another, commercially available smart
card system. This was a well-known and established system that was widely
used for many different smart card applications. One day Marius Schilder,
a colleague, showed up with a question—or rather, with a large hole in the
system. It turns out that two of the protocols had a destructive interference
with each other. One protocol computed a session key from a long-term card
key, a bit like the key negotiation protocol of this chapter. A second protocol
computed an authentication value from the long-term card key. With a bit of
tweaking, you could use the second protocol to let the smart card compute
the session key, and then send half of the bits to you. With half of the key bits
known, breaking the rest of the system was trivial. Oops! This bug was fixed in
the next version, but it is a good illustration of the problems of large protocol
specifications.

Real-world systems always have very large protocol specifications. Com-
municating is very complex, and adding cryptographic functions and dis-
trust makes things even harder. Our advice: be very careful with protocol
complexity.

One of the fundamental problems in this area is that there are no good
modularization notations for protocols, so everything ends up being mixed
together. We’ve already seen that here in this chapter: the DH parameter size
negotiation, DH key exchange, and authentication are all merged together.
This is not just a combination of loose parts; the specification and imple-
mentation mash them all together. It is rather like a really bad and complex

Chapter 14 ■ Key Negotiation 241

computer program without any modularization. We all know what that leads
to, but we’ve developed modularization techniques to deal with program
complexity. Unfortunately, we lack modularization techniques for protocols,
and developing such modularization techniques may not be an easy task.

14.11 A Gentle Warning

We’ve tried to make the design of the protocol look as easy as possible. Please
don’t be fooled by this. Protocol design is fiendishly difficult, and requires a lot
of experience. Even with lots of experience, it is very easy to get wrong. Though
we’ve tried very hard to get everything right in this book, there is always a
possibility that the key negotiation protocol we designed here is wrong. It is
important to have professional paranoia and treat all protocols with skepticism.

14.12 Key Negotiation from a Password

So far, we’ve assumed there is an authentication system to base the key
negotiation on. In many situations, all you have is a password. You could
just use a MAC keyed with the password to run this protocol, but there is a
problem: given a transcript from this protocol (acquired by eavesdropping on
the communications), you can test for any particular password. Just compute
the authentication value and see whether it is correct.

The problem with passwords is that people don’t choose them from a very
large set. There are programs that search through all likely passwords. Ideally
we’d like a key negotiation protocol where an eavesdropper cannot perform
an offline dictionary attack.

Such protocols exist; probably the best-known example is SRP [129]. They
provide a significant security improvement. We do not describe password-
based key negotiation protocols here. If you are interested in using a password-
based key negotiation protocol, you should also be aware of the fact that there
are multiple patents in this area.

14.13 Exercises

Exercise 14.1 In Section 14.5, we stated that a property of the protocol could
result in providing erroneous information to investigating administrators.
Give a concrete scenario where this could be a problem.

242 Part III ■ Key Negotiation

Exercise 14.2 Suppose Alice and Bob implement the final protocol in
Section 14.7. Could an attacker exploit a property of this protocol to mount a
denial-of-service attack against Alice? Against Bob?

Exercise 14.3 Find a new product or system that uses (or should use) a
key negotiation protocol. This might be the same product or system you
analyzed for Exercise 1.8. Conduct a security review of that product or system
as described in Section 1.12, this time focusing on the security and privacy
issues surrounding the key negotiation protocol.

C H A P T E R

15

Implementation Issues (II)

The key negotiation protocol we designed leads to some new implementation
issues.

15.1 Large Integer Arithmetic

The public-key computations all depend on large integer arithmetic. As
we already mentioned, it is not easy to implement large integer arithmetic
properly.

Large integer routines are almost always platform-specific in one way or
another. The efficiencies that can be gained by using platform-specific features
are just too great to pass up. For example, most CPUs have an add-with-carry
operation to implement addition of multiword values. But in C or almost any
other higher-level language, you cannot access this instruction. Doing large
integer arithmetic in a higher-level language is typically several times slower
than an optimized implementation for the platform. And these computations
also form the bottleneck in public-key performance, so the gain is too important
to ignore.

We won’t go into the details of how to implement large integer arithmetic.
There are other books for that. Knuth [75] is a good start, as is Chapter 14 of
the Handbook of Applied Cryptography [90]. To us, the real question is how to test
large integer arithmetic.

In cryptography, we have different goals from those of most implementers.
We consider a failure rate of 2−64 (about one in 18 million trillion) unaccept-
able, whereas most engineers would be very happy to achieve this. Many

243

244 Part III ■ Key Negotiation

programmers seem to think that a failure rate of 2−20 (about one in a million) is
acceptable, or even good. We have to do much better, because we’re working
in an adversarial setting.

Most block ciphers and hash functions are comparatively easy to test.1 Very
few implementation bugs lead to errors that are hard to find. If you make a
mistake in the S-box table of AES, it will be detected by testing a few AES
encryptions. Simple, random testing exercises all the data paths in a block
cipher or hash function and quickly finds all systematic problems. The code
path taken does not depend on the data provided, or only in a very limited
way. Any decent test set for a symmetric primitive will exercise all the possible
flows of control in the implementation.

Large integer arithmetic is different. The major difference is that in most
implementations, the code path depends on the data. Code that propagates the
last carry is used only rarely. Division routines often contain a piece of code
that is used only once every 232 divisions or even once every 264 divisions. A
bug in this part of the code will not be found by random testing. This problem
gets worse as we use larger CPUs. On a 32-bit CPU, you could still run 240

random test cases and expect that each 32-bit word value had occurred in
each part of the data path. But this type of testing simply does not work for
64-bit CPUs.

The consequence is that you have to do extremely careful testing of your large
integer arithmetic routines. You have to verify that every code path is in fact
taken during the tests. To achieve this, you have to carefully craft test vectors:
something that takes some care and precision. Not only do you have to use
every code path, but you also need to run through all the boundary conditions.
If there is a test with a < b, then you should test this for a = b − 1, a = b, and
a = b + 1, but of course only as far as these conditions are possible to achieve.

Optimization makes this already bad situation even worse. As these routines
are part of a performance bottleneck, the code tends to be highly optimized.
This in turn leads to more special cases, more code path, etc., all of which make
the testing even harder.

A simple arithmetic error can have catastrophic security effects. Here is an
example. While Alice is computing an RSA signature, there is a small error in
the exponentiation modulo p but not modulo q. (She is using the CRT to speed
up her signature.) Instead of the proper signature σ , she sends out σ + kq for
some value of k. (The result Alice gets is correct modulo q but wrong modulo
p, so it must be of the form σ + kq.) The attacker knows σ 3 mod n, which is the
number Alice is computing a root of, and which only depends on the message.
But (σ + kq)3 − σ 3 is a multiple of q, and taking the greatest common divisor
of this number and n will reveal q and thus the factorization of n. Disaster!

1Two notable exceptions are IDEA and MARS, which often use separate code for special cases.

Chapter 15 ■ Implementation Issues (II) 245

So what are we to do? First of all, don’t implement your own large integer
routines. Get an existing library. If you want to spend any time on it, spend
your time understanding and testing the existing library. Second, run really
good tests on your library. Make sure you test every possible code path.
Third, insert additional tests in the application. There are several techniques
you can use.

By the way, we’ve discussed the testing problem in terms of different code
paths. Of course, to avoid side-channel attacks (see Sections 8.5 and 15.3), the
library should be written in such a way that the code path doesn’t change
depending on the data. Most of the code path differences that occur in large
integer arithmetic can be replaced by masking operations (where you compute
a mask from the ‘‘if’’ condition and use that to select the right result). This
addresses the side-channel problem, but it has the same effect on testing. To
test a masked computation, you have to test both conditions, so you have
to generate test cases that achieve both conditions. This is exactly the testing
problem we mentioned. We merely explained it in terms of code paths, as that
seems to be easier to understand.

15.1.1 Wooping
The technique we describe in this section has the rather unusual name of
wooping. During an intense discussion between David Chaum and Jurjen Bos,
there was a sudden need to give a special verification value a name. In the
heat of the moment, one of them suggested the name ‘‘woop,’’ and afterward
the name stuck to the entire technique. Bos later described the details of
this technique in his PhD thesis [18, ch. 6], but dropped the name as being
insufficiently academic.

The basic idea behind wooping is to verify a computation modulo a ran-
domly chosen small prime. Think of it as a cryptographic problem. We have a
large integer library that tries to cheat and give us the wrong results. Our task
is to check whether we get the right results. Just checking the results with the
same library is not a good idea, as the library might make consistent errors.
Using the wooping technique, we can verify the library computations, as long
as we assume that the library is not actually malicious in the sense that it tries
very hard to corrupt our verification computations.

First, we generate a relatively small random prime t, on the order of 64–128
bits long. The value of t should not be fixed or predictable, but that is what
we have a prng for. The value of t is kept secret from all other parties.
Then, for every large integer x that occurs in the computations, we also keep
x̃ := (x mod t). The x̃ value is called the woop of x. The woop values have a
fixed size, and are generally much smaller than the large integers. Computing
the woop values is therefore not a great extra cost.

246 Part III ■ Key Negotiation

So now we have to keep woop values with every integer. For any input
x to our algorithm, we compute x̃ directly as x mod t. For all our internal
computations, we shadow the large integer computations in the woop values
to compute the woop of the result without computing it from the large integer
result.

A normal addition computes c := a + b. We can compute c̃ using c̃ = ã + b̃
(mod t). Multiplication can be handled in the same way. We could verify
the correctness of c̃ after every addition or multiplication by checking that
c mod t = c̃, but it is more efficient to do all of the checks at the very end.

Modular addition is only slightly more difficult. Instead of just writing
c = (a + b) mod n, we write c = a + b + k · n where k is chosen such that the
result c is in the range 0, . . . , n − 1. This is just another way to write the modulo
reduction. In this case, k is either 0 or −1, assuming both a and b are in the
range 0, . . . , n − 1. The woop version is c̃ = (ã + b̃ + k̃ · ñ) mod t. Somewhere
inside the modulo addition routine, the value of k is known. All we have to do
is convince the library to provide us with k, so we can compute k̃.

Modular multiplication is somewhat more difficult to do. Again we have
to write c = a · b + k · n; and to compute c̃ = ã · b̃ + k̃ · ñ (mod t), we need ã, b̃,
ñ, and k̃. The first three are readily available, but k̃ will have to be teased out of
the modular multiplication routine in some way. That can be done when you
create the library, but it is very hard to retrofit to an existing library. A generic
method is to first compute a · b, and then divide that by n using a long division.
The quotient of the division is the k we need for the woop computation. The
remainder is the result c. The disadvantage of this generic method is that it is
significantly slower.

Once you can keep the woop value with modular multiplications, it is easy
to do so with the modular exponentiation as well. Modular exponentiation
routines simply construct the modular exponentiation from modular multi-
plications. (Some use a separate modular squaring routine, but that can be
extended with a woop value just like the modular multiplication routine.) Just
keep a woop value with every large integer, and have every multiplication
compute the woop of the result from the woops of the inputs.

The woop-extended algorithms compute the woop value of the results based
on the woop values of the inputs: if one or more of the woop inputs is wrong,
the woop output is almost certainly wrong, too. So once a woop value is
wrong, the error propagates to the final result.

We check the woop values at the end of our computation. If the result is x,
all you have to do is check that (x mod t) = x̃. If the library made any mistakes,
the woop values will not match. We assume the library doesn’t carefully craft
its mistakes in a way that depends on the value t that we chose. After all, the
library code was fixed long before we chose t, and the library code is not under
control of the attacker. It is easy to show that any error the library might make

Chapter 15 ■ Implementation Issues (II) 247

will be caught by the overwhelming majority of t values. So adding a woop
verification to an existing library gives us an extremely good verification of
the computations.

What we really want is a large integer library that has a built-in woop
verification system. But we don’t know of one.

How large should your woop values be? That depends on many factors.
For random errors, the probability of the woop value not detecting the error
is about 1/t. But nothing is ever random in our world. Suppose there is a
software error in our library. We’ve got to assume that the attacker knows
this. She can choose the inputs to our computation, and not only trigger the
error but also choose the difference that the error induces. This is why t must
be a random, secret number; without knowing t, the attacker cannot target the
error in the final result to a difference that won’t be caught by our wooping.

So what would you do if you were an attacker? You would try to trigger
the error, of course, but you would also try to force the difference to be zero
modulo as many t’s as you can. The simplest countermeasure is to require that
t be a prime. If the attacker wants to cheat modulo 16 different 64-bit primes,
then she will need to carefully select at least 16 · 64 = 1024 bits of the input. As
most computations have a limited number of input bits that can be chosen by
an attacker, this limits the probability of success of the attack.

Larger values for t are better. There are so many more primes of larger sizes
that the probability of success rapidly disappears for the attacker. If we were
to keep to our original goal of 128-bit security, we would need a 128-bit t, or
something in that region.

Woop values are not the primary security of the system; they are only a
backup. If a woop verification ever fails, we know we have a bug in our
software that needs to be fixed. The program should abort whatever it is doing
and report a fatal error. This also makes it much harder for an attacker to
perform repeated attacks on the system. Therefore, we suggest using a 64-bit
random prime for t. This will reduce the overhead significantly, compared to
using a 128-bit prime, and in practice, it is good enough. If you cannot afford
the 64-bit woop, a 32-bit woop is better than nothing. Especially on most 32-bit
CPUs, a 32-bit woop can be computed very efficiently, as there are direct
multiplication and division instructions available.

If you ever have a computation where the attacker could provide a large
amount of data, you should check the intermediate woop values as well. Each
check is simple: (x mod t) ?= x̃. By checking intermediate values that depend
on only a limited number of bits from the attacker, you make it harder for her
to cheat the woop system.

Using a large integer library with woop verifications is our strong preference.
It is a relatively simple method of avoiding a large number of potential security
problems. And we believe it is less work to add woop verification to the library

248 Part III ■ Key Negotiation

once than to add application-specific verifications to each of the applications
that uses the library.

15.1.2 Checking DH Computations
If you don’t have a woop-enabled library, you will have to work without
one. The DH protocol we described already contains a number of checks;
namely, that the result should not be 1 and that the order of the result should
be q. Unfortunately, the checks are not performed by the party doing the
computation, but by the party receiving the result of the computation. In
general, you don’t want to send out any erroneous results, because they could
leak information, but in this particular case it doesn’t seem to do much harm. If
the result is erroneous, the protocol will fail in one way or another, so the error
will be noticed. The protocol safety only breaks down when your arithmetic
library returns x when asked to compute gx, but that is a type of error that
normal testing is very likely to find.

Where needed, we would probably run DH on a library without woop-
verification. The type of very rare arithmetical errors that we worry about
here are unlikely to reveal x from a gx computation. Any other mistake seems
harmless, especially since DH computations have no long-term secrets. Still,
we prefer to use a wooping library wherever possible, just to feel safe.

15.1.3 Checking RSA Encryption
RSA encryption is more vulnerable and needs extra checks. If something
goes wrong, you might leak the secret that you are encrypting, or even your
secret key.

If woop-verification is not available, there are two other methods to check
the RSA encryption. Suppose the actual RSA encryption consists of computing
c = m5 mod n, where m is the message and c the ciphertext. To verify this, we
could compute c1/5 mod n and compare it to m. The disadvantages are that this
is a very slow verification of a relatively fast computation, and that it requires
knowledge of the private key, which is typically not available when we do
RSA encryption.

Probably a better method is to choose a random value z and check that
c · z5 = (m · z)5 mod n. Here we have three computations of fifth powers: the
c = m5; the computation of z5; and then finally the check that (mz)5 matches c · z5.
Random arithmetical errors are highly likely to be caught by this verification.
By choosing a random value z, we make it impossible for any attacker to target
the error-producing values. In our designs, we only use RSA encryption to
encrypt random values, so the attacker cannot do any targeting at all.

Chapter 15 ■ Implementation Issues (II) 249

15.1.4 Checking RSA Signatures
RSA signatures are really easy to check. The signer only has to run the signature
verification algorithm. This is a relatively fast verification, and arithmetical
errors are highly likely to be caught. Every RSA signature computation should
verify the results by checking the signature just produced. There is no excuse
not to do this.

15.1.5 Conclusion
Let us make something quite clear. The checks we have been talking about
are in addition to the normal testing of the large integer libraries. They do
not replace the normal testing that any piece of software, especially security
software, should undergo.

If any of these checks ever fail, you know that your software just failed.
There is not much you can do in that situation. Continuing with the work you
are doing is unsafe; you have no idea what type of software error you have.
The only thing you can really do is log the error and abort the program.

15.2 Faster Multiplication

There are a lot of ways in which you can do a modulo multiplication faster
than a full multiply followed by a long division. If you have to do a lot of
multiplications, then Montgomery’s method [93] is the most widely used one;
see [39] for a readable description.

The basic idea behind Montgomery’s method is a technique to compute
(x mod n) for some x much larger than n. The traditional ‘‘long division’’
method is to subtract suitable multiples of n from x. Montgomery’s idea is
simpler: divide x repeatedly by 2. If x is even, we divide x by two by shifting
the binary representation one bit to the right. If x is odd, we first add n (which
does not change the value modulo n, of course) and then divide the even result
by 2. (This technique only works if n is odd, which is always the case in our
systems. There is a simple generalization for even values of n.) If n is k bits
long, and x is not more than (n − 1)2, we perform a total of k divisions by 2.
The result will always be in the interval 0, . . . , 2n − 1, which is an almost fully
reduced result modulo n.

But wait! We’ve been dividing by 2, so this gives us the wrong answer.
Montgomery’s reduction does not actually give you (x mod n), but rather
x/2k mod n for some suitable k. The reduction is faster, but you get an extra
factor of 2−k. There are various tricks to deal with this extra factor.

250 Part III ■ Key Negotiation

One bad idea is to simply redefine your protocol to include an extra factor 2−k

in the computations. This is bad because it mixes different levels. It modifies
the cryptographic protocol specification to favor a particular implementation
technique. Perhaps you’ll want to implement the protocol on another platform
later, where you’ll find that you don’t want to use Montgomery multiplication
at all. (Maybe that platform is slow but has a large integer coprocessor that
performs modular multiplication directly.) In that case, the 2−k factors in the
protocol become a real hindrance.

The standard technique is to change your number representation. A number
x is represented internally by x · 2k. If you want to multiply x and y, you do
a Montgomery multiplication on their respective representations. You get x ·
2k · y · 2k, but you also get the extra 2−k factor from the Montgomery reduction,
so the final result is x · y · 2k mod n, which is exactly the representation of
xy. The overhead cost of using Montgomery reduction therefore consists of
the cost of converting the input numbers into the internal representation
(multiplication by 2k) and the cost of converting the output back to the real
result (division by 2k). The first conversion can be done by performing a
Montgomery multiplication of x and (22k mod n). The second conversion can
be done by simply running the Montgomery reduction for another k bits, as
that divides by 2k. The final result of a Montgomery reduction is not guaranteed
to be less than n, but in most cases it can be shown to be less than 2n − 1. In
those situations, a simple test and an optional subtraction of n will give the
final correct result.

In real implementations, the Montgomery reduction is never done on a
bit-by-bit basis, but per word. Suppose the CPU uses w-bit words. Given a
value x, find a small integer z such that the least significant word of x + zn
is all zero. You can show that z will be one word, and can be computed by
multiplying the least significant word of x with a single word constant factor
that only depends on n. Once the least significant word of x + zn is zero, you
divide by 2w by shifting the value a whole word to the right. This is much
faster than a bit-by-bit implementation.

15.3 Side-Channel Attacks

We discussed timing attacks and other side-channel attacks briefly back in
Section 8.5. The main reason we were brief there is not because these attacks
are benign. It is, rather, that timing attacks are also useful against public-key
computations and we now consider both.

Some ciphers invite implementations that use different code paths to handle
special situations. IDEA [84, 83] and MARS [22] are two examples. Other
ciphers use CPU operations whose timing varies depending on the data they

Chapter 15 ■ Implementation Issues (II) 251

process. On some CPUs, multiplication (used by RC6 [108] and MARS) or
data-dependent rotation (used by RC6 and RC5 [107]) has an execution time
that depends on the input data. This can enable timing attacks. The primitives
we have been using in this book do not use these types of operations. AES
is, however, vulnerable to cache timing attacks [12], or attacks that exploit the
difference in the amount of time it takes to retrieve data from cache rather than
main memory.

Public-key cryptography is also vulnerable to timing attacks. Public-key
operations often have a code path that depends on the data. This almost always
leads to different processing times for different data. Timing information, in
turn, can lead to attacks. Imagine a secure Web server for e-commerce. As part
of the SSL negotiations, the server has to decrypt an RSA message chosen by
the client. The attacker can therefore connect to the server, ask it to decrypt
a chosen RSA value, and wait for the response. The exact time it takes the
server to respond can give the attacker important information. Often it turns
out that if some bit of the key is one, inputs from set A are slightly faster than
inputs from set B, and if the key bit is zero, there is no difference. The attacker
can use this difference to attack the system. She generates millions of queries
from both sets A and B, and tries to find a statistical difference in the response
times to the two groups. There might be many other factors that influence the
exact response time, but she can average those out by using enough queries.
Eventually she will gather enough data to measure whether the response times
for A and B are different. This gives the attacker one bit of information about
the key, after which the attack can proceed with the next bit.

This all sounds far-fetched, but it has been done in the laboratory, and could
very well be done in practice [21, 78].

15.3.1 Countermeasures
There are several ways to protect yourself against timing attacks. The most
obvious one is to ensure that every computation takes a fixed amount of
time. But this requires the entire library be designed with this goal in mind.
Furthermore, there are sources of timing differences that are almost impossible
to control. Some CPUs have a multiplication instruction that is faster for some
values than for others. Many CPUs have complicated cache systems, so as soon
as your memory access pattern depends on nonpublic data, the cache delays
might introduce a timing difference. It is almost impossible to rid operations
of all timing differences. We therefore need other solutions.

An obvious idea is to add a random delay at the end of each computation.
But this does not eliminate the timing difference. It just hides it in the noise of
the delay. An attacker who can take more samples (i.e., get your machine to
do more computations) can average the results and hope to average out the
random delay that was added. The exact number of tries the attacker needs

252 Part III ■ Key Negotiation

depends on the magnitude of the timing difference the attacker is looking for,
and the magnitude of the random delay that is added. In real timing attacks,
there is almost always a lot of noise, so any attacker who tries a timing attack
is already doing the averaging. The only question is the ratio of the signal to
the noise.

A third method is to make an operation constant-time by forcing it to last
a standardized amount of time. During development, you choose a duration
d that is longer than the computation will ever take. You then mark the time
t at which the computation started, and after the computation you wait until
time t + d. This is slightly wasteful, but it is not too bad. We like this solution,
but it only provides protection against pure timing attacks. If the attacker
can listen in on the RF radiation that your machine emits or measure the
power consumption, the difference between the computation and the delay
is probably detectable, which in turn allows timing attacks as well as other
attacks. Still, an RF-based attack requires the attacker to be physically close to
the machine. That enormously reduces the threat, compared to timing attacks
that can be done over the Internet.

You can also use techniques that are derived from blind signatures [78]. For
some types of computations they can hide (almost) all of the timing variations.

There is no perfect solution to the problem of timing attacks. It is simply not
possible to secure the computers you can buy against a really sophisticated
attack such as an RF-based one. But although you can’t create a perfect solution,
you can get a reasonably good one. Just be really careful with the timing of
your public-key operations. An even better solution than just making your
public-key operations fixed-time is to make the entire transaction fixed-time,
using the technique mentioned above. That is, you not only make the public-
key operation fixed-time, but you also fix the time between when the request
comes in and the response goes out. If the request comes in at a time t, you
send the response at time t + C for some constant C. But to make sure you
never leak any timing information, you had better be sure that the response
will be ready at time t + C. To guarantee this, you will probably have to limit
the frequency at which you accept incoming requests to some fixed upper
bound.

15.4 Protocols

Implementing cryptographic protocols is not that different from implementing
communication protocols. The simplest method is to maintain the state in the
program counter, and simply perform each of the steps of the protocol in
turn. Unless you use multithreading, this stops everything else in the program
while you wait for an answer. As the answer might not be forthcoming, this is
often a bad idea.

Chapter 15 ■ Implementation Issues (II) 253

A better solution is to keep an explicit protocol state, and update the state
each time a message arrives. This message-driven approach is slightly more
work to implement, but it provides much more flexibility.

15.4.1 Protocols Over a Secure Channel
Most cryptographic protocols are executed over insecure channels, but some-
times you run a cryptographic protocol over a secure channel. This makes
sense in some situations. For example, each user has a secure channel to a
key distribution center; the key distribution center uses a simple protocol to
distribute keys to the users to allow them to communicate to each other. (The
Kerberos protocol does something like this.) If you are running a cryptographic
protocol with a party you have already exchanged a key with, you should
use the full secure channel functionality. In particular, you should implement
replay protection. This is very easy to do, and it prevents a large number of
attacks on the cryptographic protocol.

Sometimes the secure channel allows the protocol to use shortcuts. For
example, if the secure channel provides replay protection, the protocol itself
does not have to. Still, the old modularization rule states that the protocol
should minimize its dependency on the secure channel.

For the rest of our protocol implementation discussion, we are going to
assume that the protocol runs over an insecure channel. Some of the discussion
does not quite apply to the secure channel case, but the solutions can never
hurt.

15.4.2 Receiving a Message
When a protocol state receives a message, there are several checks that have
to be made. The first is to see if the message belongs to the protocol at all. Each
message should start with the following fields:

Protocol identifier. Identifies exactly which protocol and protocol version this
is. Version identifiers are important.

Protocol instance identifier. Identifies which instance of the protocol this mes-
sage belongs to. Perhaps Alice and Bob are running two key negotiation
protocols simultaneously, and we don’t want to confuse the two runs.

Message identifier. Identifies the message within the protocol. The easiest
method is to simply number them.

Depending on the situation, some of these identifiers can be implicit. For
example, for protocols that run over their own TCP connection, the port
number and its associated socket uniquely identify the protocol instance on

254 Part III ■ Key Negotiation

the local machine. The protocol identifier and version information only need
to be exchanged once. Note that it is important to exchange them at least once
to make sure they get included in any authentication or signature used in the
protocol.

After checking the protocol identifier and instance identifier, we know which
protocol state to send the message to. Let us assume that the protocol state has
just received message n − 1 and is expecting to receive message n.

If the received message is indeed message n, things are easy. Just process it
as the protocol rules specify. But what if it has a different number?

If the number is larger than n or less than n − 1, something very weird is
going on. Such a message should not have been generated, and therefore must
be a forgery of some kind. You must ignore the contents of the forged message.

If the received message is message n − 1, the reply message you sent might
not have arrived. At least, this could happen if you are running the protocol
over an unreliable transport system. As we want to minimize dependencies
on other parts of the system, this is exactly what we will assume.

First of all, check that the newly received message n − 1 is absolutely
identical to the previous message with number n − 1 that you received. If they
are different, you must ignore the new message. Sending a second answer will
break the security of many protocols. If the messages are identical, just resend
your reply. Of course, the version that you resend must be identical to the
previous reply that you sent.

If you ignored the received message due to any of these rules, you have a
second decision to make. Should you abort the protocol? The answer depends
to some extent on the application and situation. If you have been running a
protocol over a secure channel, something is very wrong. Either the secure
channel is compromised, or the party you are talking to is misbehaving. In
either case, you should abort the protocol and the channel. Simply delete the
protocol state and the channel state, including the channel key.

If you’re running the protocol over an insecure channel, then any of the
ignored messages could be from an attacker trying to interfere with the
protocol. Ideally, you would ignore the attacker’s messages and just complete
the protocol. This is, of course, not always possible. For example, if the
attacker’s forged message n − 1 reaches you first, you will send a reply. If you
later receive the ‘‘real’’ message n − 1, you are forced to ignore it. There is no
recovery from this situation, as you cannot safely send a second reply. But you
have no idea which of the two messages n − 1 you received was the real one,
so in order to have the best chance of completing the protocol successfully,
you should just log the second message n − 1 as an error and continue as
usual. If the message you replied to came from the attacker, the protocol will
fail eventually because cryptographic protocols are specifically designed to

Chapter 15 ■ Implementation Issues (II) 255

prevent attackers from successfully completing the protocol with one of the
participants.

15.4.3 Timeouts
Any protocol run includes timeouts. If you don’t get a response to a message
within a reasonable time, you can resend your last message. After a few
resends, you have to give up. There is no point continuing with a protocol
when you cannot communicate with the other party.

The easiest way to implement timeouts is to send timing messages to the
protocol state. You can use timers explicitly set by the protocol, or use timing
messages that are sent every few seconds or so.

One well-known attack is to send lots of ‘‘start-of-protocol’’ messages to a
particular machine. Each time you receive a start-of-protocol message, you
initialize a new protocol execution state. After receiving a few million of these,
the machine runs out of memory, and everything stops. A good example is the
SYN flood attack. There is no easy method to protect yourself against these
flooding attacks in general, especially in the age of botnets and distributed
attacks, but they do show that it is important to delete old protocol states. If a
protocol is stalled for too long, you should delete it.

The proper timing for resends is debatable. In our experience, a packet on
the Internet either arrives within a second or so, or is lost forever. Resending a
message if you haven’t received a reply within five seconds seems reasonable.
Three retries should be enough; if the message loss rate is so high that you
lose four consecutive messages spread out over 15 seconds, you’re not going
to get a whole lot done over that connection. We prefer to inform the user of a
problem after 20 seconds, rather than require the user to sit there and wait for
a minute or two.

15.5 Exercises

Exercise 15.1 Consider all the operations a computer might perform with a
cryptographic key. Which ones might have timing characteristics that could
leak information about the key?

Exercise 15.2 Find a new product or system that manipulates secret data. This
might be the same product or system you analyzed for Exercise 1.8. Conduct
a security review of that product or system as described in Section 1.12, this
time focusing on issues surrounding side-channel attacks.

P a r t

IV
Key Management

In This Part

Chapter 16: The Clock

Chapter 17: Key Servers

Chapter 18: The Dream of PKI

Chapter 19: PKI Reality

Chapter 20: PKI Practicalities

Chapter 21: Storing Secrets

C H A P T E R

16

The Clock

Before we begin the detailed discussion of key management in the next
chapter, we need to discuss one more primitive function: the clock. At first
glance, this is a decidedly un-cryptographic primitive, but because the current
time is often used in cryptographic systems, we need a reliable clock.

16.1 Uses for a Clock

There are several cryptographic uses for a clock. Key management functions
are often linked to deadlines. The current time can provide both a unique
value and a complete ordering of events. We will discuss each of these uses in
more detail.

16.1.1 Expiration
In many situations, we want to limit the validity period of a document. In
the real world, we often see limited validity periods too. Checks, open airline
tickets, vouchers, coupons, and even copyrights all have limited validity
periods. The standard way to limit the validity period of a digital document is
to include the expiration time in the document itself. But to check whether a
document has expired, we need to know the current time. Hence, the need for
a clock.

259

260 Part IV ■ Key Management

16.1.2 Unique Value
Another useful function of a clock—if its resolution is high enough—is to
provide a unique value for a single machine. We’ve been using nonces in
several places. The important property of a nonce is that any single value is
never used twice, at least within some defined scope. Sometimes the scope is
limited, such as the nonce we use in the secure channel, and the nonce can
be generated using a counter. In other situations, the nonce has to be unique
across reboots of the computer. There are two generic ways of generating
nonce values. The first is to use the current time of the clock with some
mechanism to ensure you never use the same time code twice. The second is to
use a prng, which we discussed in some detail in Chapter 9. The disadvantage
of using a random nonce is that it needs to be rather large. To achieve a
security level of 128 bits, we would need to use a 256-bit random nonce. Not all
primitives support such a large nonce. Furthermore, a prng can be very hard
to implement on certain platforms. A reliable clock is an attractive alternative
way to generate nonces.

16.1.3 Monotonicity
One of the useful properties of time is that it always keeps going forward.
It never stops or reverses. There are cryptographic protocols that use this
property. Including the time in a cryptographic protocol prevents an attacker
from trying to pass off old messages as ones that belong to the current protocol.
After all, the time encoded in those messages is not within the time-span of
the current protocol.

Another really important application of the clock is auditing and logging.
In any kind of transaction system, it is very important to keep a log of what
happened. If there is ever a dispute, the audit logs provide the necessary data
to trace the exact sequence of events. Including the time in each logging event
is important; without a time stamp, it is very hard to know which events
belong to the same transaction, and in which order the events occurred. As
well-synchronized clocks do not deviate significantly from each other, the
time stamps allow events from different logs on different machines to be
correlated.

16.1.4 Real-Time Transactions
Our next example comes from Niels’s work on electronic payment systems.
To support real-time payments, the bank needs to run a real-time financial
transaction system. To allow an audit to be performed, there should be a clear

Chapter 16 ■ The Clock 261

sequence of transactions. Given two transactions A and B, it is important to
know which of the two was performed first, because the result of one of them
could depend on whether the other one has been performed yet or not. The
simplest way to record this sequence is to give a time stamp to each transaction.
This only works if you have a reliable clock.

An unreliable clock might give the wrong time. There is little harm done
if the clock accidentally moves backward: it is easy to check that the current
time is greater than the time stamp of the last transaction performed. There is
a problem, however, if the clock moves forward. Suppose half an hour’s worth
of transactions were done with the clock set in 2020. You can’t just change
the time stamps of those transactions; it is not acceptable to modify financial
records by hand. You can’t perform any new transactions with a time stamp
before 2020 because that would upset the order of the transactions, which
is determined by the time stamp. There are solutions to this problem, but a
reliable clock is certainly preferable.

16.2 Using the Real-Time Clock Chip

Most desktop computers contain a real-time clock chip and a small battery.
This is really a small digital watch built into your machine. This is how your
computer knows what time it is when you start it up in the morning. Why not
simply use this clock time?

The real-time clock chip is adequate for normal use, but in a security system
we have to impose higher standards. As part of the security system, the clock
should give the correct time even if an enemy tries to manipulate the clock. A
second reason is the consequences of a failed clock. For normal uses, a clock
that shows the wrong time is irritating but not dangerous. If the clock is part
of the security system, clock failures can result in much greater damage.

The real-time clocks in typical hardware are not as reliable and secure as
we need. We have personally experienced several real-time clock chip failures
in the last decade. Moreover, those failures were spontaneous, without a
malicious attacker trying to corrupt the clock. Most failures are simple. On an
old machine, the battery runs low and the clock stops or resets to 1980. Or one
day you start the machine and the clock has been set to some date in 2028.
Sometimes a clock just gradually drifts faster or slower than the real time.

Apart from accidental errors in real-time clocks, we have to consider active
attacks. Someone might try to manipulate the clock in some way. Depending
on the details of the computer, changing the clock time can be easy or hard.
On some systems, you need special administrator access to change the clock;
others have clocks that can be changed by anyone.

262 Part IV ■ Key Management

16.3 Security Dangers

There are several types of attack that can be mounted against a system with a
clock.

16.3.1 Setting the Clock Back
Suppose the attacker can set the clock to some arbitrary time in the past. This
might allow all kinds of mischief. The machine mistakenly believes it lives in
the past. Maybe an attacker once had access to some data because he was a
temporary employee, but that access has now expired. With the wrong time
on the clock, a computer might now allow this ex-employee access to the
sensitive data. This problem has the potential of occurring every time some
access is revoked from a user. Setting the clock back might restore his access,
depending on how the rest of the system was designed.

Another interesting avenue of attack is automated tasks. Suppose an HR
computer makes salary payments automatically at the end of the month, using
direct deposit. Automated tasks like this are initiated by a program that checks
the time and has a list of tasks to perform. Repeatedly setting the clock back
can trigger the tasks repeatedly. If the task is set to start at midnight, the
attacker sets the clock to 23:55 (11:55 pm), and waits for the task to be started.
After the task finishes, the attacker sets the clock back again. He can repeat
this until the bank balance of the company is exhausted.

Another problem occurs in financial systems. It is important to get the
time of a transaction right because interest computations give different results
depending on when a transaction was performed. If you carry a large balance
on your credit card, it would be very advantageous to convince your bank’s
computer that the online payment you just made actually happened six months
ago, and avoid paying six months of interest.

16.3.2 Stopping the Clock
Every designer lives with the instinctive understanding that time does not
stand still. It is an unspoken assumption, too obvious to even document.
The systems they design rely on time behaving normally. But if the clock is
stopped, time appears to stand still. Things might not get done. And many
systems behave in unpredictable ways.

The simple problems are things like getting the wrong time on audit logs and
reports. The exact time of a transaction can have large financial consequences,
and sending out formal paperwork with the wrong date and time on it can
lead to serious complications.

Chapter 16 ■ The Clock 263

Other problems might occur with real-time displays. Maybe the GUI pro-
grammer uses a simple system to display the current situation at the real-time
broker. Every ten seconds, he refreshes the display with the latest data. But
not all reports of financial transactions arrive with the same speed, due to
various delays. Just reporting the latest data that was received is going to give
an inconsistent view of the financial situation. Maybe one part of a transaction
has already been reported, but the other half has not. The money could show
up on the bank balance before the shares move from the stock holdings.
Accountants do not like to get reports where the numbers do not add up.

So the programmer does something clever. Each report of a financial
transaction is time-stamped and stored in a local database. To display a
consistent report, he takes a particular point in time and reports the financial
situation at that point in time. For example, if the slowest system has a five-
second delay in reporting, he displays the financial situation of seven seconds
ago. It increases the display delay a bit, but it guarantees a consistent report.
That is, until the clock is stopped. Suddenly, the display reports the same
situation over and over again: the situation of seven seconds ago relative to
the (failed) clock. Oops!

16.3.3 Setting the Clock Forward
Setting the clock forward makes the computer think it lives in the future. This
leads to simple denial-of-service attacks. With the clock set four years in the
future, all credit card transactions are suddenly refused because all the cards
have expired. You cannot book online airline tickets either, because there is no
airline schedule out yet for those dates.

Substantial bidding at eBay auctions happens in the last seconds. If you
can move eBay’s clock forward just a little bit, you cut out many of the other
bidders and can obtain the item at a cheaper price.

A friend of ours had a problem of this nature with his billing system. Due to
a software error, the clock jumped ahead by about 30 years. The billing system
started to bill all his customers for 30 years of unpaid bills. In this case, it didn’t
result in a direct financial loss, but it could have been different if he had been
using automatic debits from bank accounts or credit cards. It certainly wasn’t
good customer relations.

There are also direct security risks involved with clocks set to a future time.
There are many situations in which certain data is to be kept secret until a
specific time, and made public after that time. In an automated system, setting
the clock forward provides access to the data. If this is a profit warning for a
publicly traded company, quite a bit of profit can be made from accessing this
data prematurely.

264 Part IV ■ Key Management

16.4 Creating a Reliable Clock

We don’t have a simple solution to the clock problem. We can suggest some
ideas and techniques, but the details depend too much on the exact working
environment and the risk analysis for us to be able to give universal answers.
Our goal here is therefore multifold. We wish to increase understanding,
encourage minimal reliance on a clock, identify key issues to consider, and
provide an example for how to think about building a reliable clock.

Most computers have, or can implement, a counter of some sort that starts
when the computer is booted. This might be a count of the number of CPU
clock cycles, a refresh counter, or something similar. This counter can be used
to keep track of the time since the last reboot. It is not a clock, as it provides
no information about what the actual time is, but it can be used to measure
elapsed time between events as long as both events happened since the last
reboot.

The main use for this type of counter, at least in relation to our clock problem,
is to check for accidental errors in the real-time clock. If the real-time clock
doesn’t run properly, it will show discrepancies with the clock counter. This
is simple to test for, and provides some warning for certain error modes of
the clock chip. Note that the correspondence between clock time and counter
value has to be modified if the clock time is changed by an authorized user.

A second simple check is to keep track of the time of the last shutdown, or
the last time data was written to disk. The clock should not jump backwards.
If your machine suddenly boots in the year 1980, it is obvious that something
is wrong. It is also possible to stop the clock jumping forward too much. Most
computers are booted at least once a week. Perhaps you should get the user
to confirm the correct date if the machine hasn’t been booted for a week.1

That would catch the case of the clock jumping more than a week forward. Of
course, we’re assuming here that the user is not the adversary.

There are other methods of checking the time. You could ask a time server
on the Internet or an intranet. There are widely used time synchronization
protocols such as NTP [92] or SNTP [91]. Some of these protocols even provide
for authentication of the time data so an attacker cannot spoof the machine.
Of course, the authentication requires some kind of keying infrastructure. The
shared key with the time server could be a manually configured symmetric
key, but manually configuring keys is a hassle. It can also be done using a PKI,
but as we will see in Chapter 18, most PKI systems need a clock, which results
in a chicken-and-egg problem. Be careful if you rely on the cryptographic
protection offered by a clock synchronization protocol. The security of your
entire system could hinge on the security of the protocol.

1As most users will hit the OK button without bothering to look at the message, it is probably
better to ask the user to enter the current date, without showing him what the clock-date is.

Chapter 16 ■ The Clock 265

16.5 The Same-State Problem

This brings us to a serious problem that you find on some hardware platforms.
We’re talking here about small embedded computers—something like a door
lock or a remote smart card reader. These typically consist of a small CPU, a
small amount of RAM, nonvolatile memory (e.g., flash) to store the program,
some communication channels, and further task-specific hardware.

You will notice that a real-time clock is often not included. Adding a real-
time clock requires an extra chip, an oscillator crystal, and most importantly, a
battery. Apart from the extra cost, adding a battery complicates the device. You
now have to worry about the battery running out. Batteries can be sensitive to
temperature fluctuations, and the toxic chemicals in some batteries can even
lead to problems with shipping the hardware. For all of these reasons, many
small computers do not have a real-time clock.

Every time such a small computer is booted, it starts in exactly the same state.
It reads the same program from the same nonvolatile memory, initializes the
hardware, and starts operations. As this is a book about cryptography, we will
assume that some kind of cryptographic protocol is used in the communication
with other pieces of the system. But here is the problem: without a clock or
hardware random number generator, the embedded system will always repeat
the exact same behavior. Suppose the attacker waits until the gate computer
needs to open the gate because a truck needs to pass through. She reboots
the gate computer just before the gate needs to open (e.g., by interrupting
the power supply momentarily). After some initialization procedures, the
central system will command the gate computer to open the gate via the
communication channel. The next day, the attacker reboots the gate computer
again, and sends exactly the same messages as were sent the first time. As the
gate computer starts in the same state and sees the same inputs, it behaves the
same and opens the gate. This is bad. Note that it doesn’t matter if the gate
computer uses a time synchronization protocol. The protocol messages can be
replayed from yesterday, and the gate computer has no way of detecting this.
The same-state problem is not solved by any protocol.

A real-time clock chip solves this problem. The small embedded computer
can encrypt the current time with a fixed secret key to generate highly random
data. This data can in turn be used as a nonce in a cryptographic protocol. As
the real-time clock never repeats its state, the embedded computer can avoid
falling into the same-state trap.

A hardware random number generator has the same effect. It allows the
embedded computer to behave differently each time it is rebooted.

But if you don’t have a real-time clock or a random number generator, you
have a big problem. Sometimes you can fudge a bit and try to extract random-
ness from the clock skew between the local clock oscillator and the network

266 Part IV ■ Key Management

timing or another oscillator, but it is very hard to extract enough entropy from
this within a short time. Taking 10 minutes to reboot an embedded computer
is simply unacceptable.

We’ve seen the same-state problem come up again and again. The upshot
is that the hardware has to change before you can do useful cryptography
on such small computers. This is hard to sell to managers, especially since
the hardware is often already in the field and they don’t want to hear that
something cannot be done. But there is no magic security sauce that you can
pour over an existing insecure system to make it secure. If you don’t design
the security into the system from the very start, you almost never get good
security.

There is one more possible solution, though it rarely works in practice.
Sometimes you can keep a reboot counter in the nonvolatile memory. Each
time the CPU reboots, it increments a counter in nonvolatile memory. This
solution is fraught with problems. Some nonvolatile memories can only be
updated a few thousand times, which makes the machine wear out if you keep
updating the counter. Some nonvolatile technologies require an additional
power voltage to be programmable, which is often not available in the field.
In some designs, you can only set bits in nonvolatile memory, or wipe all of
the nonvolatile memory. The latter option is not viable, as you’d lose the main
program of the machine. Even if all these problems are overcome, it is very
difficult to modify nonvolatile memory in such a way that the counter always
reliably increases even if the power supply to the machine can be interrupted
at arbitrary points in time. This nonvolatile counter option is only viable in
a minority of the cases we’ve seen. When it is feasible, such a counter could
be used as part of a prng. For example, the counter could be used with CTR
mode and an AES key to generate a stream of pseudorandom bits.

16.6 Time

While we’re discussing clocks, we have a few short comments on which time
base to choose. Stay away from local time. Local time is the time we use on our
watches and other clocks. The problem is, local time changes with daylight
saving time and time zone. These changes pose problems: some time values
are repeated each year when clocks are set back an hour in the fall, which
means that the time is no longer unique or monotonic. Some time values are
impossible when clocks are set forward an hour in the spring. Furthermore,
the exact date on which daylight saving time starts and stops is different in
different countries. In some countries, the rules change every few years, and
you don’t want to have to update your software for that. And people who
travel with laptops might change the time on their laptops to the local time,
which just makes these problems worse.

Chapter 16 ■ The Clock 267

The obvious choice is to use UTC time. This is an international time standard
based on atomic clocks, and is widely used throughout the world. Any single
computer can keep track of the offset of local time with regard to UTC and use
this knowledge in interactions with the user.

There is one problem with UTC: the leap seconds. To keep UTC synchronized
with the Earth’s rotation, there is a leap second once every few years or so. So
far, all leap seconds have been extra seconds; there is a particular minute that
gets 61 seconds. It is also theoretically possible to have a missing second. It all
depends on the rotation of the Earth. The problem for computers is that the
leap seconds are unpredictable. Ignoring leap seconds leads to inaccuracies in
measuring time intervals across a leap second. This is not really a cryptographic
problem, but if you want to make a good clock, you might as well do it right.
All computer software always assumes that each minute has 60 seconds. If
you synchronize directly to a real UTC clock, the insertion of a leap second can
lead to problems. Most likely this results in your internal clock repeating itself
for one second. It is a minor problem, but again, it destroys the uniqueness
and monotonicity of time values.

For most applications, the exact synchronization of the clock is less
important than the monotonicity and uniqueness of the time stamps. As
long as you make sure the clock never jumps backwards at a leap second, it
doesn’t matter how you solve this problem.

16.7 Closing Recommendations

Unfortunately, we have no ideal solution for you. Creating a reliable clock is
very tricky, especially in a cryptographic setting where you assume there are
malicious attackers. The best solution depends on your local situation. Our
recommendations, therefore, are to be aware there are potential security issues
associated with the use of a clock, minimize reliance on the clock whenever
possible, and be cautious. And again, the most important thing is generally
the monotonicity and uniqueness of the time stamps.

16.8 Exercises

Exercise 16.1 Some computers use NTP at boot, or at regular intervals. Turn
off NTP for one week on your computer. Write a program that at regular
intervals (at least once every two hours) records both the true time and the
time reported by your computer. Let t0 be the initial true time at the start of
your experiment. For each time measurement pair, plot the true time minus t0

on the horizontal axis of a graph and plot your computer’s time minus true

268 Part IV ■ Key Management

time on the vertical axis. How different is your computer’s clock from true
time after one week? Does your graph tell you anything else?

Exercise 16.2 Repeat exercise 16.1, but this time for a collection of five
different computers.

Exercise 16.3 Find a new product or system that uses (or should use) a clock.
This might be the same product or system you analyzed for Exercise 1.8. Con-
duct a security review of that product or system as described in Section 1.12,
this time focusing on the security and privacy issues surrounding the clock.

C H A P T E R

17

Key Servers

At last we turn to key management. This is, without a doubt, the most difficult
issue in cryptographic systems, which is why we left it to near the end. We’ve
discussed how to encrypt and authenticate data, and how to negotiate a shared
secret key between two participants. Now we need to find a way for Alice
and Bob to recognize each other over the Internet. As you will see, this gets
very complex very quickly. Key management is especially difficult because
it involves people instead of mathematics, and people are much harder to
understand and predict. Key management is in many ways a capstone to all
we have discussed so far. Much of the benefit of cryptography is defeated if
key management is done poorly.

Before we start, let us make one thing clear. We talk only about the
cryptographic aspects of key management, not the organizational aspects. The
organizational aspects include things like a policy covering whom to issue keys
to, which keys get access to which resources, how to verify the identity of the
people who get keys, policies on the security of the stored keys, mechanisms
for verifying that these policies are being adhered to, etc. Every organization
will implement these differently, depending on their requirements and their
existing organizational infrastructure. We focus only on parts that directly
affect the cryptographic system.

One way to handle key management is to have a trusted entity to hand out
all the keys. We’ll call this entity the key server.

269

270 Part IV ■ Key Management

17.1 Basics

The basic idea is simple. We assume that everybody sets up a shared secret
key with the key server. For example, Alice sets up a key KA that is known
only to her and to the key server. Bob sets up a key KB that is known only to
him and to the key server. Other parties set up keys in the same fashion.

Now suppose Alice wants to communicate with Bob. She has no key she can
use to communicate with Bob, but she can communicate securely with the key
server. The key server, in turn, can communicate securely with Bob. We could
simply send all the traffic to the key server and let the key server act as a giant
post office. But that is a bit hard on the key server, as it would have to handle
enormous amounts of traffic. A better solution is to let the key server set up a
key KAB that is shared by Alice and Bob.

17.2 Kerberos

This is the basic idea behind Kerberos, a widely used key management system
[79]. Kerberos is based on the Needham-Schroeder protocol [102].

At a very basic level, here is how it works. When Alice wants to talk to Bob,
she first contacts the key server. The key server sends Alice a new secret key
KAB plus the key KAB encrypted with Bob’s key KB. Both these messages are
encrypted with KA, so only Alice can read them. Alice sends the message that
is encrypted with Bob’s key, called the ticket, to Bob. Bob decrypts it and gets
KAB, which is now a session key known only to Alice and Bob—and to the key
server, of course.

One of the features of Kerberos is that the key server, called the KDC in
Kerberos terminology, does not have to update its state very often. Of course,
the key server has to remember the key that it shares with each user. But when
Alice asks the KDC to set up a key between her and Bob, the KDC performs
the function and then forgets all about it. It does not keep track of which keys
between users have been set up. This is a nice property because it allows a
heavily loaded key server to be distributed over several machines in a simple
manner. As there is no state to be updated, Alice can talk to one copy of the
key server one moment and to another copy the next moment.

It turns out that the cryptographic protocols needed for a Kerberos-style
system are very complicated. Initially, designing such protocols looks quite
easy to do, but even experienced cryptographers have published proposals,
only to have them broken later on. The flaws that creep in are very subtle.
We’re not going to explain these protocols here; they are too dangerous to

Chapter 17 ■ Key Servers 271

experiment with and modify by hand. Even we shy away from designing this
type of protocol anew. If you want to use a protocol of this sort, use the latest
version of Kerberos. Kerberos has been around for quite a while, and many
competent people have looked at it.

17.3 Simpler Solutions

Sometimes it is not possible to use Kerberos. The protocol is far from simple,
and it imposes some restrictions. Servers have to memorize all tickets that they
have accepted, and every participant needs a reliable clock. There are several
situations in which these requirements cannot be met. Further, we find it more
informative to study a simpler design.

We can create a simpler and more robust solution if we don’t put so much
emphasis on efficiency. It turns out to be especially useful to allow the key
server to maintain state. Modern computers are far more powerful than they
were in the days when Kerberos was first designed, and they should not have
any trouble maintaining state for tens of thousands of participants. Even a very
large system with 100,000 participants is not a problem: if each participant
requires a 1 kilobyte state in the key server, storing all states requires only 100
megabytes of memory. The key server still needs to be fast enough to set up
all the requested keys, but that too is much less of a problem with modern,
fast computers.

We will only discuss the situation in which there is a single key server.
There are techniques that you can use to distribute the key server state over
several computers, but we won’t go into the details, because you really don’t
want to have a key server for tens of thousands of participants; it’s too risky.
The danger of large key servers is that all the keys are in a single place. That
makes the key server a very attractive target for attack. The key server must
also be online at all times, which means an attacker can always communicate
with the key server at will. The current state of the art does not protect
computers from network attacks very well, and putting all your keys in a
single place is an invitation to disaster. For smaller systems, the total ‘‘value’’
of the keys kept by the key server is smaller, so this threat is reduced.1 In
the next few chapters we will explore a solution to the key management
system that is better suited to very large systems. We will restrict our dis-
cussion of key servers to fairly small systems—up to a few thousand partici-
pants or so.

1We don’t like to leave any unaddressed threat in the system, but in key management, you
always end up with a compromise solution.

272 Part IV ■ Key Management

17.3.1 Secure Connection
Here is a brief description of a simpler solution. First, we assume that Alice
and the key server share a key KA. Instead of using this key directly, they use
it to run a key negotiation protocol, like the ones we discussed in Chapter 14.
(If KA is a password, you’d really prefer to use one of the protocols suitable
for low-entropy passwords that we discussed in Section 14.12, assuming the
patent issues are not a problem for you.) The key negotiation protocol sets up
a fresh key K′

A between the key server and Alice. All other participants also
perform the same protocol with the key server, and they all set up fresh keys.

Alice and the key server use K′
A to create a secure communication channel (see

Chapter 7 for details). Using the secure channel, Alice and the key server can
communicate securely. Confidentiality, authentication, and replay protection
are all provided by the secure channel. All further communications happen
over this secure channel. All other participants create a similar secure channel
with the key server.

17.3.2 Setting Up a Key
It is now much easier to design a protocol that sets up a key between Alice
and Bob. We only need to consider the case where messages get lost, delayed,
or deleted by the attacker, because the secure channel protects us from all
other types of manipulation. The protocol can now be something fairly simple.
Alice asks the key server to set up a key between her and Bob. The key server
responds by sending a new key KAB to both Alice and Bob. The key server
can even send the message to Bob through Alice, so that it does not need to
communicate with Bob directly. If this happens, Alice simply becomes the
equivalent of a network router transiting a secure channel between the key
server and Bob.

This does pose one limitation on the system: Bob must run the key negoti-
ation protocol with the key server before Alice asks the key server to set up a
shared key with Bob. Whether this turns out to be a problem depends on the
exact circumstances, as do the possible solutions to this limitation.

17.3.3 Rekeying
Like all keys, the K′

A key must have a limited lifetime. This is easy to arrange,
as Alice can always rerun the key negotiation protocol (using the original key
KA for authentication) to set up a fresh K′

A key. A key lifetime of a few hours
seems reasonable for most situations.

Because we can always rekey, the key server does not have to store the secure
channel state in a reliable manner. Suppose the key server crashes and loses

Chapter 17 ■ Key Servers 273

all state information. As long as it remembers KA (and the corresponding keys
for the other participants), there is no problem. All we have to do to recover is
run the key negotiation protocol between the key server and every participant
again. So although the key server is not stateless, it does not have to modify its
long-term state—the part that is stored on nonvolatile media—when running
the protocols.

17.3.4 Other Properties
Perhaps our solution is not simpler than Kerberos from an implementation
point of view, but it is simpler from a conceptual point of view. The secure
channel makes it much easier to oversee the possible lines of attack against
the protocol. Using the key negotiation protocol and the secure channel we
already designed is a good example of how modularization can help in the
design of cryptographic protocols.

Using the key negotiation protocol to set up the secure channel has another
advantage: we get forward secrecy. If Alice’s key KA is compromised today,
her old secure channel keys K′

A are not revealed, and therefore all her old
communications are still secure.

In the earlier parts of the book, we gave a detailed example design of the
cryptographic function we discussed. We won’t do that here, nor will we for
the rest of the book. The cryptography is fairly straightforward, and we could
certainly have described a key server system, but it would not be very useful.
Designing key management systems is more a problem of collecting a suitable
set of requirements for the particular application and getting the user interface
right than a problem of cryptography. To be able to explain the design choices
for a concrete example here, we would have to invent and document the entire
surrounding social and organizational structure, the threat environment, and
the application that needs the key management.

17.4 What to Choose

If you want to implement a central key server, you should use Kerberos if
possible. It is widely available and widely used.

In those situations where Kerberos is not suitable, you will have to design
and build something like the solution we described, but that will be a major
operation. For the most common type of cryptographic applications we have
seen, you should count on spending as much time on the key server system as
you did on the entire application. Our discussion here should help guide your
thinking.

274 Part IV ■ Key Management

17.5 Exercises

Exercise 17.1 For the protocol in Section 17.3, what is a reasonable lifetime
to use for the keys K′

A? Why? What bad things could happen if the lifetime is
longer? What bad things could happen if the lifetime is shorter?

Exercise 17.2 For the protocol in Section 17.3, how might an attacker be able
to learn K′

A before it times out? What bad things would the attacker be able to
do with that knowledge? What bad things would the attacker not be able to
do with that knowledge?

Exercise 17.3 For the protocol in Section 17.3, how might an attacker be able
to learn K′

A after it times out? What bad things would the attacker be able to do
with that knowledge? What bad things would the attacker not be able to do
with that knowledge?

Exercise 17.4 For the protocol in Section 17.3, consider an attacker who inter-
cepts all communications. Can the attacker retroactively read data between
Alice and Bob if KA and KB are both later exposed?

Exercise 17.5 For the protocol in Section 17.3, could an attacker gain any
advantage in breaking the protocol by forcibly rebooting the key server?

Exercise 17.6 For the protocol in Section 17.3, could an attacker mount a
denial-of-service attack against two parties wishing to communicate, and if so,
how?

Exercise 17.7 For the protocol in Section 17.3, are there policy or legal risks
with having the key server generate KAB? Are there things Alice and Bob would
not say in a situation where the key server generates KAB that they would say
if the key were known only to them?

C H A P T E R

18

The Dream of PKI

In this chapter we will give the standard presentation of what a PKI is, and
how it solves the key management problem. It is important to understand
this first. In the next chapter we’ll talk about the challenges with PKIs in
practice, but for this chapter we’ll visit the perfect world where a PKI solves
all your problems.

18.1 A Very Short PKI Overview

A PKI is a Public-Key Infrastructure. It is an infrastructure that allows you to
recognize which public key belongs to whom. The classical description is as
follows.

There is a central authority that is called the Certificate Authority, or CA
for short. The CA has a public/private key pair (e.g., an RSA key pair) and
publishes the public key. We will assume that everybody knows the CA’s
public key. As this key remains the same over long periods of time, this is easy
to accomplish.

To join the PKI, Alice generates her own public/private key pair. She keeps
the private key secret, and takes the public key PKA to the CA and says: ‘‘Hi,
I’m Alice and PKA is my public key.’’ The CA verifies that Alice is who she
says she is and then signs a digital statement that states something like ‘‘Key
PKA belongs to Alice.’’ This signed statement is called the certificate. It certifies
that the key belongs to Alice.

If Alice now wants to communicate with Bob, she can send him her public
key and the certificate. Bob has the CA’s public key, so he can verify the

275

276 Part IV ■ Key Management

signature on the certificate. As long as Bob trusts the CA, he also trusts that
PKA actually belongs to Alice.

Using the same procedures, Bob gets his public key certified by the CA,
and sends his public key and certificate to Alice. They now know each other’s
public key. These keys in turn can be used to run the key negotiation protocol
to establish a session key for secure communications.

What is required is a central CA that everybody trusts. Each participant
needs to get his or her public key certified, and each participant needs to know
the CA’s public key. After that, everybody can securely communicate with
everybody else.

That sounds simple enough.

18.2 PKI Examples

To make the rest of this chapter easier to understand, we’ll first give some
examples of how PKIs can be implemented and used.

18.2.1 The Universal PKI
The ultimate dream is a universal PKI. A large organization, like the post
office, certifies everybody’s public key. The beauty of this is that every person
only needs to get a single key certified, as the same key can be used for
every application. Because everybody trusts the post office, or whatever other
organization becomes the universal CA, everybody can communicate securely
with everybody else, and they all live happily ever after.

If our description sounds a bit like a fairy tale, that is because it is. There is
no universal PKI, and there never will be.

18.2.2 VPN Access
A more realistic example would be a company that has a VPN (Virtual Private
Network) to allow its employees to access the corporate network from home
or from their hotel room when they are traveling. The VPN access points must
be able to recognize the people who have access and exactly what level of
access they have. The IT department of the company acts as the CA and gives
every employee a certificate that allows the VPN access points to recognize
the employee.

18.2.3 Electronic Banking
A bank wants to allow its customers to perform financial transactions on the
bank’s website. Properly identifying the customer is vital in this application,
as is the ability to produce proof acceptable in court. The bank itself can act as
the CA and certify the public keys of its customers.

Chapter 18 ■ The Dream of PKI 277

18.2.4 Refinery Sensors
A refinery complex is very large. Spread out between miles of pipes and access
roads are hundreds of sensors that measure things like temperature, flow rate,
and pressure. Spoofing sensor data is a very serious attack on the refinery. It
might not be too difficult to send false sensor data to the control room, tricking
the operators into taking actions that lead to a large explosion. Therefore, it
is imperative that the control room get the proper sensor readings. We can
use standard authentication techniques to ensure that the sensor data has not
been tampered with, but to be sure that the data actually comes from the
sensor, some kind of key infrastructure is needed. The company can act as a
CA and build a PKI for all the sensors so each sensor can be recognized by the
control room.

18.2.5 Credit Card Organization
A credit card organization is a cooperative venture between a few thousand
banks spread out all over the world. All of these banks must be able to
exchange payments. After all, a user who has a credit card from bank A must
be able to pay the merchant that banks with bank B. Bank A will need to settle
with bank B in some way, and that requires secure communications. A PKI
allows all banks to identify each other and perform secure transactions. In this
situation, the credit card organization can act as the CA that certifies the keys
of each bank.

18.3 Additional Details

In real life, things become somewhat more complicated, so various extensions
to the simple PKI scheme are often used.

18.3.1 Multilevel Certificates
In many situations, the CA is split into multiple pieces. For example, the central
credit card organization is not going to certify each bank directly. Instead, they
will have regional offices to deal with the individual banks. You then get a
two-level certificate structure. The central CA signs a certificate on the regional
CA’s public key that says something like: ‘‘Key PKX belongs to regional office
X and is allowed to certify other keys.’’ Each regional office can then certify
individual bank keys. The certificate on the bank’s key consists of two signed
messages: the central CA’s delegation message that authorizes the regional
office’s key, and the regional office’s certification of the bank’s key. This is
called the certificate chain, and such a chain can be extended to any number
of levels.

278 Part IV ■ Key Management

Such multilevel certificate structures can be very useful. They basically
allow the CA functionality to be split into a hierarchy, which is easy to handle
for most organizations. Almost all PKI systems have a multilevel structure.
One disadvantage of this structure is that the certificates grow larger and
require more computations to verify, but this is a relatively small cost in most
situations. Another disadvantage is that each extra CA that you add to the
system provides another point of attack, and thereby reduces overall system
security.

One way to reduce the disadvantage of the large multilevel certificates that
we have not seen in practice would be to collapse the certificate hierarchy. To
continue with this example, once the bank has its two-level certificate, it could
send it to the central CA. The central CA verifies the two-level certificate and
replies with a single certificate on the bank’s key, using the master CA key.
Once the key hierarchy is collapsed like this, the performance cost of adding
extra levels to the hierarchy becomes very small. But then again, adding extra
layers might not be such a good idea; many-layered hierarchical structures are
rarely effective.

You have to be careful when chaining certificates together like this. They
add more complexity, and complexity is in general risky. Here is an example.
Secure sites on the Internet use a PKI system to allow browsers to identify
the correct website. In practice, this system isn’t very secure, if only because
most users don’t verify the name of the website they are using. But a while
back, a fatal bug showed up in a library that validates certificates on all
Microsoft operating systems. Each element of the certificate chain contains a
flag that specifies whether the key it certifies is a CA key or not. CA keys are
allowed to certify other keys. Non-CA keys are not allowed to certify other
keys. This is an important difference. Unfortunately, the library in question
didn’t check this flag. So an attacker could buy a certificate for the domain
nastyattacker.com and use it to sign a certificate for amazon.com. Microsoft
Internet Explorer used the faulty library. It would accept nastyattacker.com’s
certification of a fake Amazon key and show the fake website as the real
Amazon website. Thus, a worldwide security system that cost a fortune to
build was completely outflanked by a simple little bug in a single library. Once
the bug was published, a patch was released (it took several tries to fix all the
problems), but this remains a good example of a minor bug destroying the
security of an entire system.

18.3.2 Expiration
No cryptographic key should be used indefinitely; there is always a risk
that the key will be compromised. Regular key changes let you recover from
compromise, albeit slowly. A certificate should not be valid forever, either,
because both the CA’s key and the public key that is being certified expire.

../../../../../nastyattacker.com/default.htm
../../../../../amazon.com/default.htm
../../../../../nastyattacker.com/default.htm

Chapter 18 ■ The Dream of PKI 279

Apart from these cryptographic reasons, expiration is important in keeping
information up-to-date. When a certificate expires, a new one will have to
be reissued, and this creates an opportunity to update the information in the
certificate. A typical expiration interval is somewhere between a few months
and a few years.

Almost all certificate systems include an expiration date and time. Nobody
should accept the certificate after this date and time. This is why participants
in a PKI need a clock.

Many designs include other data in the certificate. Often certificates have a
not-valid-before time, in addition to the expiration time. There can be different
classes of certificates, certificate serial numbers, date and time of issue, etc.
Some of this data is useful, some useless.

The most commonly used format for certificates is X.509 v3, which is overly
complicated. See Peter Gutmann’s style guide [58] for a discussion of X.509.
If you work on a system that doesn’t have to be interoperable with other
systems, you might strongly consider forgetting about X.509. Of course, X.509
is standardized, and it’s hard to fault you for using a standard.

18.3.3 Separate Registration Authority
Sometimes you will see a system with a separate registration authority. The
problem is a political one. It is the HR department of a company that decides
who is an employee. But the IT department has to run the CA; that is a technical
job that they are not going to allow the HR department to do.

There are two good solutions to this. The first one is to use a multilevel
certificate structure and let the HR department be its own sub-CA. This
automatically provides the necessary flexibility to support multiple sites. The
second solution is much like the first one, except that once a user has a two-
level certificate, he exchanges it for a one-level certificate at the central CA.
This eliminates the overhead of checking a two-level certificate each time it is
used, at the cost of adding a simple two-message protocol to the system.

The really bad solution is to add a third party to the cryptographic pro-
tocol. The project specifications will talk about the CA and another party
that might be called something like the RA (Registration Authority). The CA
and RA are treated as completely separate entities, which can add more than
100 pages of documentation to the system. That is bad in itself. Then there
is the need to specify the RA–CA interaction. We’ve even seen three-party
protocols in which the RA authorizes the CA to issue a certificate. This is a
good example of the problem of imposing user requirements on a technical
solution. User requirements only specify the outside behavior of a system.
The company needs to have separate functionality for the HR and IT depart-
ments. But that does not mean the software has to have different code for
the HR and IT departments. In many situations, and certainly in this one, the

280 Part IV ■ Key Management

two departments can use much of the same functionality, and thus much of
the same code. Using a single set of certificate functions leads to a design
that is simpler, cheaper, more powerful, and more flexible than one based
directly on the original requirements that included both a CA and an RA
entity. A two-level CA scheme allows HR and IT to share most of the code
and protocols. The differences, in this case, are mostly in the user interface and
should be easy to implement. That translates to maybe a few hundred lines of
extra code, not a few hundred extra pages of specifications that turn into tens
of thousands of lines of code.

18.4 Summary

What we have described is a dream, but a very important dream. PKI is the
first and last word on key management for most of our industry. People have
been brought up on this dream and see it as something so obvious that it
doesn’t need stating. To be able to understand them, you must understand the
PKI dream, because a lot of what they say is within the context of the dream.
And it feels so good to think that you have a solution to the key management
problem

18.5 Exercises

Exercise 18.1 Suppose a CA is malicious. What bad things could the CA
accomplish?

Exercise 18.2 Assume a universal PKI. Can any security problems arise
because of the use of this single PKI across multiple applications?

Exercise 18.3 What policy or organizational challenges might impede or
prevent the deployment of a worldwide universal PKI?

Exercise 18.4 In addition to the examples in Sections 18.2.2–18.2.5, give three
example scenarios for which a PKI might be viable.

C H A P T E R

19

PKI Reality

While very useful, there are some fundamental problems with the basic idea
of a PKI. Not in theory, but then, theory is something very different from
practice. PKIs simply don’t work in the real world the way they do in the ideal
scenario discussed in Chapter 18. This is why much of the PKI hype has never
matched the reality.

When talking about PKIs, our view is much broader than just e-mail and the
Web. We also consider the role of PKIs in authorization and other systems.

19.1 Names

We’ll start with a relatively simple problem: the concept of a name. The PKI
ties Alice’s public key to her name. What is a name?

Let’s begin in a simple setting. In a small village, everybody knows every-
body else by sight. Everybody has a name, and the name is either unique or
will be made unique. If there are two Johns, they will quickly come to be called
something like Big John and Little John. For each name there is one person, but
one person might have several names; Big John might also be called Sheriff or
Mr. Smith.

The name we are talking about here is not the name that appears on legal
documents. It is the name that people use to refer to you. A name is really
any kind of signifier that is used to refer to a person, or more generally, to an
entity. Your ‘‘official’’ name is just one of many names, and for many people
it is one that is rarely used.

281

282 Part IV ■ Key Management

As the village grows into a town, the number of people increases until you
no longer know them all. Names start losing their immediate association with
a person. There might only be a single J. Smith in town, but you might not
know him. Names now start to lead a life of their own, divorced from the
actual person. You start talking about people you have never actually met.
Maybe you end up talking in the bar about the rich Mr. Smith who just moved
here and who is going to sponsor the high school football team next year. Two
weeks later, you find out that this is the same person who joined your baseball
team two months ago, and whom you know by now as John. People still have
multiple names, after all. It just isn’t obvious which names belong together,
and which person they refer to.

As the town grows into a city, this changes even more. Soon you will only
know a very small subset of the people. What is more, names are no longer
unique. It doesn’t really help to know that you are looking for a John Smith
if there are a hundred of them in the city. The meaning of a name starts
to depend on the context. Alice might know three Johns, but at work when
she talks about ‘‘John,’’ it is clear from the context that she means John who
works upstairs in sales. Later at home, it might mean John the neighbor’s kid.
The relationship between a name and a person becomes even fuzzier.

Now consider the Internet. Over a billion people are online. What does
the name ‘‘John Smith’’ mean there? Almost nothing: there are too many of
them. So instead of more traditional names we use e-mail addresses. You now
communicate with jsmith533@yahoo.com. That is certainly a unique name, but
in practice it does not link to a person in the sense of someone you will ever
meet. Even if you could find out information such as his address and phone
number, he is just as likely to live on the other side of the world. You are never
going to meet him in person unless you really set out to do so. Not surpri-
singly, it is not uncommon for people to take on different online personalities.
And as always, each person has multiple names. Most users acquire multiple
e-mail addresses after a while. (We have more than a dozen among us.) But
it is extremely difficult to find out whether two e-mail addresses refer to the
same person. And to make things more complicated, there are people who
share an e-mail address, so that ‘‘name’’ refers to them both.

There are large organizations that try to assign names to everybody. The
best-known ones are governments. Most countries require each person to
have a single official name, which is then used on passports and other official
documents. The name itself is not unique—there are many people with the
same name—so in practice it is often extended with things like address,
driver’s license number, and date of birth. This still does not guarantee a
unique identifier for a person, however.1 Also, several of these identifiers
can change over the course of a person’s life. People change their addresses,

1Driver’s license numbers are unique, but not everybody has one.

mailto://jsmith533@yahoo.com

Chapter 19 ■ PKI Reality 283

driver’s license numbers, names, and even gender. Just about the only thing
that doesn’t change is the date of birth, but this is compensated for by the fact
that plenty of people lie about their date of birth, in effect changing it.

Just in case you thought that each person has a single government-sanc-
tioned official name, this isn’t true, either. Some people are stateless and
have no papers at all. Others have dual nationalities, with two governments
each trying to establish an official name—and for various reasons, they may
not agree on what the official name should be. The two governments might
use different alphabets, in which case the names cannot be the same. Some
countries require a name that fits the national language and will modify foreign
names to a similar ‘‘proper’’ name in their own language.

To avoid confusion, many countries assign unique numbers to individuals,
like the Social Security number (SSN) in the United States or the SoFi number
in the Netherlands. The whole point of this number is to provide a unique and
fixed name for an individual, so his actions can be tracked and linked together.
To a large degree these numbering schemes are successful, but they also have
their weaknesses. The link between the actual human and the assigned number
is not very tight, and false numbers are used on a large scale in certain sectors
of the economy. And as these numbering schemes work on a per-country
basis, they do not provide global coverage, nor do the numbers themselves
provide global uniqueness.

One additional aspect of names deserves mention. In Europe, there are
privacy laws that restrict what kind of information an organization can store
about people. For example, a supermarket is not allowed to ask for, store,
or otherwise process an SSN or SoFi number for its loyalty program. This
restricts the reuse of government-imposed naming schemes.

So what name should you use in a PKI? Because many people have many
different names, this becomes a problem. Maybe Alice wants to have two
keys, one for her business and one for her private correspondence. But she
might use her maiden name for her business and her married name for her
private correspondence. Things like this quickly lead to serious problems if
you try to build a universal PKI. This is one of the reasons why smaller
application-specific PKIs work much better than a single large one.

19.2 Authority

Who is this CA that claims authority to assign keys to names? What makes
that CA authoritative with respect to these names? Who decides whether
Alice is an employee who gets VPN access or a customer of the bank with
restricted access?

For most of our examples, this is a question that is simple to answer. The
employer knows who is an employee and who isn’t; the bank knows who is

284 Part IV ■ Key Management

a customer. This gives us our first indication of which organization should be
the CA. Unfortunately, there doesn’t seem to be an authoritative source for the
universal PKI. This is one of the reasons why a universal PKI cannot work.

Whenever you are planning a PKI, you have to think about who is autho-
rized to issue the certificates. For example, it is easy for a company to be
authoritative with regard to its employees. The company doesn’t decide what
the employee’s name is, but it does know what name the employee is known
by within the company. If ‘‘Fred Smith’’ is officially called Alfred, this does not
matter. The name ‘‘Fred Smith’’ is a perfectly good name within the context of
the employees of the company.

19.3 Trust

Key management is the most difficult problem in cryptography, and a PKI
system is one of the best tools that we have to solve it with. But everything
depends on the security of the PKI, and therefore on the trustworthiness
of the CA. Think about the damage that can be done if the CA starts to
forge certificates. The CA can impersonate anyone in the system, and security
completely breaks down.

A universal PKI is very tempting, but trust is really the area where it fails.
If you are a bank and you need to communicate with your customers, would
you trust some dot-com on the other side of the world? Or even your local
government bureaucracy? What is the total amount of money you could lose if
the CA does something horribly wrong? How much liability is the CA willing
to take on? Will your local banking regulations allow you to use a foreign CA?
These are all enormous problems. Just imagine the damage that can occur if
the CA’s private key is published on a website.

Think of it in traditional terms. The CA is the organization that hands out
the keys to the buildings. Most large office buildings have guards, and most
guards are hired from an outside security service. The guards verify that the
rules are being obeyed: a rather straightforward job. But deciding who gets
which keys is not something that you typically outsource to another company,
because it is a fundamental part of the security policy. For the same reason,
the CA functionality should not be outsourced.

No organization in the world is trusted by everybody. There isn’t even one
that is trusted by most people. Therefore, there will never be a universal PKI.
The logical conclusion is that we will have to use lots of small PKIs. And this
is exactly the solution we suggest for our examples. The bank can be its own
CA; after all, the bank trusts itself, and all the customers already trust the bank

Chapter 19 ■ PKI Reality 285

with their money. A company can be its own CA for the VPN, and the credit
card organization can also run its own CA.

An interesting observation here is that the trust relationships used by the
CA are ones that already exist and are based on contractual relationships. This
is always the case when you design cryptographic systems: the basic trust
relationships you build on are all based on contractual relationships.

19.4 Indirect Authorization

Now we come to a big problem with the classic PKI dream. Consider autho-
rization systems. The PKI ties keys to names, but most systems are not
interested in the name of the person. The banking system wants to know
which transactions to authorize. The VPN wants to know which directories to
allow access to. None of these systems cares who the key belongs to, only what
the keyholder is authorized to do.

To this end, most systems use some kind of access control list, or ACL.
This is just a database of who is authorized to do what. Sometimes it is
sorted by user (e.g., Bob is allowed the following things: access files in the
directory /homes/bob, use of the office printer, access to the file server), but
most systems keep the database indexed by action (e.g., charges to this account
must be authorized by Bob or Betty). Often there are ways to create groups of
people to make the ACLs simpler, but the basic functionality remains the same.

So now we have three different objects: a key, a name, and permission to
do something. What the system wants to know is which key authorizes which
action, or in other words, whether a particular key has a particular permission.
The classic PKI solves this by tying keys to names and using an ACL to tie
names to permissions. This is a roundabout method that introduces additional
points of attack [45].

The first point of attack is the name–key certificate provided by the PKI. The
second point of attack is the ACL database that ties names to permissions. The
third point of attack is name confusion: with names being such fuzzy things,
how do you compare whether the name in the ACL is the same as the name in
the PKI certificate? And how do you avoid giving two people the same name?

If you analyze this situation, you will clearly see that the technical design
has followed the naive formulation of the requirements. People think of
the problem in terms of identifying the key holder and who should have
access—that is how a security guard would approach the problem. Automated
systems can use a much more direct approach. A door lock doesn’t care who
is holding the key, but allows access to anyone with the key.

286 Part IV ■ Key Management

19.5 Direct Authorization

A much better solution is generally to directly tie the permissions to the key,
using the PKI. The certificate no longer links the key to a name; it links the key
to a set of permissions [45].

All systems that use the PKI certificates can now decide directly whether to
allow access or not. They just look at the certificate provided and see if the key
has the appropriate permissions. It is direct and simple.

Direct authorization removes the ACL and the names from the authorization
process, thereby eliminating these points of attack. Some of the problems will,
of course, reappear at the point where certificates are issued. Someone must
decide who is allowed to do what, and ensure that this decision is encoded
in the certificates properly. The database of all these decisions becomes the
equivalent of the ACL database, but this database is less easy to attack. It is
easy to distribute to the people making the decisions, removing the central
ACL database and its associated vulnerabilities. Decision makers can just
issue the appropriate certificate to the user without further security-critical
infrastructure. This also removes much of the reliance on names, because the
decision makers are much further down in the hierarchy and have a much
smaller set of people to deal with. They often know the users personally, or at
least by sight, which helps a great deal in avoiding name confusion problems.

So can we just get rid of the names in the certificates, then?
Well, no. Though the names will not be used during normal operations,

we do need to provide logging data for audits and such. Suppose the bank
just processed a salary payment authorized by one of the four keys that has
payment authority for that account. Three days later, the CFO calls the bank
and asks why the payment was made. The bank knows the payment was
authorized, but it has to provide more information to the CFO than just a few
thousand random-looking bits of public-key data. This is why we still include
a name in every certificate. The bank can now tell the CFO that the key used to
authorize the payment belonged to ‘‘J. Smith,’’ which is enough for the CFO
to figure out what happened. But the important thing here is that the names
only need to be meaningful to humans. The computer never tries to figure
out whether two names are the same, or which person the name belongs to.
Humans are much better at dealing with the fuzzy names, whereas computers
like simple and well-specified things such as sets of permissions.

19.6 Credential Systems

If you push this principle further, you get a full-fledged credential system.
This is the cryptographer’s super-PKI. Basically, it requires that you need a
credential in the form of a signed certificate for every action you perform.

Chapter 19 ■ PKI Reality 287

If Alice has a credential that lets her read and write a particular file, she
can delegate some or all of her authority to Bob. For example, she could
sign a certificate on Bob’s public key that reads something like ‘‘Key PKBob is
authorized to read file X by delegated authority of key PKAlice.’’ If Bob wants
to read file X, he has to present this certificate and a certificate proof that Alice
has read access to file X.

A credential system can add additional features. Alice could limit the time
validity of the delegation by including the validity period in the certificate.
Alice might also limit Bob’s ability to delegate the authority to read file X.2

In theory, a credential system is extremely powerful and flexible. In practice,
they are rarely used. There are several reasons for this.

First of all, credential systems are quite complex and can impose a noticeable
overhead. Your authority to access a resource might depend on a chain of
half-a-dozen certificates, each of which has to be transmitted and checked.

The second problem is that credential systems invite a micromanagement
of access. It is so easy to split authorities into smaller and smaller pieces that
users end up spending entirely too much time deciding exactly how much
authority to delegate to a colleague. This time is often wasted, but a bigger
problem is the loss of the colleague’s time when it turns out he doesn’t have
enough access to do his job. Maybe this micromanagement problem can be
solved with better user education and better user interfaces, but that seems
to be an open problem. Some users avoid the micromanagement problem by
delegating (almost) all their authority to anyone who needs any kind of access,
effectively undermining the entire security system.

The third problem is that you need to develop a credential and delegation
language. The delegation messages need to be written in some sort of logical
language that computers can understand. This language needs to be powerful
enough to express all the desired functionality, yet simple enough to allow
fast chaining of conclusions. It also has to be future-proof. Once a credential
system is deployed, every program will need to include code to interpret the
delegation language. Upgrading to a new version of the delegation language
can be very difficult, especially since security functionality spreads into every
piece of a system. Yet it is effectively impossible to design a delegation
language that is general enough to satisfy all future requirements, since we
never know what the future will bring. This remains an area of research.

The fourth problem with credential systems is probably insurmountable.
Detailed delegation of authority is simply too complex a concept for the
average user. There doesn’t seem to be a way of presenting access rules to

2This is an often-requested feature, but we believe it may not always be a good one. Limiting
Bob’s ability to delegate his authority just invites him to run a proxy program so that other
people can use his credential to access a resource. Such proxy programs undermine the security
infrastructure and should be banned, but this is only tenable if there are no operational reasons to
run a proxy. And there are always operational reasons why someone needs to delegate authority.

288 Part IV ■ Key Management

users in a manner they can understand. Asking users to make decisions about
which authorities to delegate is bound to fail. We see that in the real world
already. In some student houses it is customary for one person to go to the
ATM and get cash for several people. The other students lend him their ATM
card and PIN code. This is an eminently risky thing to do, yet it is done by some
of the supposedly more well-educated people in our society. As consultants,
we’ve visited many companies and sometimes had work-related reasons to
have access to the local network. It is amazing how much access we got. We’ve
had system administrators give us unrestricted access to the research data,
when all we needed to do was look at a file or two. If system administrators
have a hard time getting this right, ordinary users certainly will, too.

As cryptographers, we’d love the idea of a credential system if only the users
were able to manage the complexity. There is undoubtedly a lot of interesting
research to do on human interactions with security systems.

There is, however, one area where credentials are very useful and should be
mandatory. If you use a hierarchical CA structure, the central CA signs certifi-
cates on the keys of the sub-CAs. If these certificates do not include any kind of
restriction, then each sub-CA has unlimited power. This is problematic; we’ve
just multiplied the number of places where system-critical keys are stored.

In a hierarchical CA structure, the power of a sub-CA should be limited by
including restrictions in the certificate on its key. This requires a credential-like
delegation language for CA operations. Exactly what type of restrictions you’d
want to impose depends on the application. Just think about what type of
sub-CAs you want to create and how their power should be limited.

19.7 The Modified Dream

Let’s summarize all the criticism of PKIs we’ve presented so far and present
a modified dream. This is a more realistic representation of what a PKI
should be.

First of all, each application has its own PKI with its own CA. The world
consists of a large number of small PKIs. Each user is a member of many
different PKIs at the same time.

The user must use different keys for each PKI, as he cannot use the same
key in different systems without careful coordination in the design of the two
systems. The user’s key store will therefore contain dozens of keys, requiring
tens of kilobytes of storage space.

The PKI’s main purpose is to tie a credential to the key. The bank’s PKI
ties Alice’s key to the credential that allows access to Alice’s account. Or the
company’s PKI ties Alice’s key to a credential that allows access to the VPN.
Significant changes to a user’s credentials require a new certificate to be issued.
Certificates still contain the user’s name, but this is mainly for management
and auditing purposes.

Chapter 19 ■ PKI Reality 289

This modified dream is far more realistic. It is also more powerful, more
flexible, and more secure than the original dream. It is very tempting to believe
that this modified dream will solve your key management problems. But in
the next section, we will encounter the hardest problem of all—one that will
never be solved fully and will always require compromises.

19.8 Revocation

The hardest problem to solve in a PKI is revocation. Sometimes a certificate has
to be withdrawn. Maybe Bob’s computer was hacked and his private key was
compromised. Maybe Alice was transferred to a different department or even
fired from the company. You can think of all kinds of situations where you
want to revoke a certificate.

The problem is that a certificate is just a bunch of bits. These bits have been
used in many places and are stored in many places. You can’t make the world
forget the certificate, however hard you try. Bruce lost a PGP key more than a
decade ago; he still gets e-mail encrypted with the corresponding certificate.3

Even trying to make the world forget the certificate is unrealistic. If a thief
breaks into Bob’s computer and steals his private key, you can be certain he
also made a copy of the certificate on the corresponding public key.

Each system has its own requirements, but in general, revocation require-
ments differ in four variables:

Speed of revocation. What is the maximum amount of time allowed between
the revocation command and the last use of the certificate?

Reliability of revocation. Is it acceptable that under some circumstances
revocation isn’t fully effective? What residual risk is acceptable?

Number of revocations. How many revocations should the revocation
system handle at a time?

Connectivity. Is the party checking the certificates online at the time of
certificate verification?

There are three workable solutions to the revocation problem: revocation
lists, fast expiration, and online certificate verification.

19.8.1 Revocation List
A certificate revocation list, or CRL, is a database that contains a list of revoked
certificates. Everybody who wants to verify a certificate must check the CRL
database to see if the certificate has been revoked.

3PGP has its own strange PKI-like structure called the web of trust. Those interested in PGP’s web
of trust should read [130].

290 Part IV ■ Key Management

A central CRL database has attractive properties. Revocation is almost
instantaneous. Once a certificate has been added to the CRL, no further
transactions will be authorized. Revocation is also very reliable, and there is
no direct upper limit on how many certificates can be revoked.

The central CRL database also has significant disadvantages. Everybody
must be online all the time to be able to check the CRL database. The CRL
database also introduces a single point of failure: if it is not available, no
actions can be performed. If you try to solve this by authorizing parties to
proceed whenever the CRL is unavailable, attackers will use denial-of-service
attacks to disable the CRL database and destroy the revocation capability of
the system.

An alternative is to have a distributed CRL database. You could make a
redundant mirrored database using a dozen servers spread out over the world
and hope it is reliable enough. But such redundant databases are expensive
to build and maintain and are normally not an option. Don’t forget, people
rarely want to spend money on security.

Some systems simply send copies of the entire CRL database to every device
in the system. The U.S. military STU-III encrypted telephone works in this
manner. This is similar to the little booklets of stolen credit card numbers that
used to be sent to each merchant. It is relatively easy to do. You can just let
every device download the updated CRL from a Web server every half hour
or so, at the cost of increasing the revocation time. However, this solution
restricts the size of the CRL database. Most of the time you can’t afford to copy
hundreds of thousands of CRL entries to every device in the system. We’ve
seen systems where the requirements state that every device must be capable
of storing a list of 50 CRL entries, which can be problematic.

In our experience, CRL systems are expensive to implement and maintain.
They require their own infrastructure, management, communication paths,
and so on. A considerable amount of extra functionality is required just to
handle the comparatively rarely used functionality of revocation.

19.8.2 Fast Expiration
Instead of revocation lists, you can use fast expiration. This makes use of the
already existing expiration mechanism. The CA simply issues certificates with
a very short expiration time, ranging anywhere from 10 minutes to 24 hours.
Each time Alice wants to use her certificate, she gets a new one from the CA.
She can then use it for as long as it remains valid. The exact expiration speed
can be tuned to the requirements of the application, but a certificate validity
period of less than 10 minutes does not seem to be very practical.

The major advantage of this scheme is that it uses the already available
certificate issuing mechanism. No separate CRL is required, which significantly
reduces the overall system complexity. All you need to do to revoke a

Chapter 19 ■ PKI Reality 291

permission is inform the CA of the new access rules. Of course, everybody still
needs to be online all the time to get the certificates reissued.

Simplicity is one of our main design criteria, so we prefer fast expiration to a
CRL database. Whether fast expiration is possible depends mostly on whether
the application demands instantaneous revocation, or whether a delay is
acceptable.

19.8.3 Online Certificate Verification
Another alternative is online certificate verification. This approach, which is
embodied in the Online Certificate Status Protocol (OCSP), has seen a lot of
headway in some domains, such as Web browsers.

To verify a certificate, Alice queries a trusted party—such as the CA or a
delegated party—with the serial number of the certificate in question. The
trusted party looks up the status of the certificate in its own database, and
then sends a signed response to Alice. Alice knows the trusted party’s public
key and can verify the signature on the response. If the trusted party says the
certificate is valid, Alice knows that the certificate has not been revoked.

Online certificate verification has a number of attractive properties. As with
CRLs, revocation is almost instantaneous. Revocation is also very reliable.
Online certificate verification also shares some disadvantages with CRLs.
Alice must be online to verify a certificate, and the trusted party becomes a
point of failure.

In general, we prefer online certificate verification to CRLs. Online certificate
verification avoids the problem of massively distributing the CRLs and avoids
the need to parse and verify the CRLs on the client. The design of online
certificate verification protocols can therefore be made cleaner, simpler, and
more scalable than CRLs.

In most situations online certificate verification is inferior to fast expiration,
however. With online certificate verification, you can’t trust the key without a
trusted party’s signature. If you view that signature as a new certificate on the
key, you have a fast-expiration system with very short expiration times. The
disadvantage of online certificate verification is that every verifier has to query
the trusted party, whereas for fast expiration the prover can use the same CA
signature for many verifiers.

19.8.4 Revocation Is Required
Because revocation can be hard to implement, it becomes very tempting not to
implement it at all. Some PKI proposals make no mention of revocation. Others
list the CRL as a future extension possibility. In reality, a PKI without some
form of revocation is pretty useless. Real-life circumstances mean that keys do
get compromised, and access has to be revoked. Operating a PKI without a

292 Part IV ■ Key Management

working revocation system is somewhat like operating a ship without a bilge
pump. In theory, the ship should be watertight and it shouldn’t need a bilge
pump. In practice, there is always water collecting in the bottom of the ship,
and if you don’t get rid of it, the ship eventually sinks.

19.9 So What Is a PKI Good For?

At the very beginning of our PKI discussion, we stated that the purpose of
having a PKI is to allow Alice and Bob to generate a shared secret key, which
they use to create a secure channel, which they in turn use to communicate
securely with each other. Alice wants to authenticate Bob (and vice versa)
without talking to a third party. The PKI is supposed to make this possible.

But it doesn’t.
There is no revocation system that works entirely offline. It is easy to see why.

If neither Alice nor Bob contacts any outside party, neither of them can ever
be informed that one of their keys has been revoked. So the revocation checks
force them to go online. Our revocation solutions require online connections.

But if we are online, we don’t need a big complex PKI. We can achieve our
desired level of security by simply setting up a central key server, such as
those described in Chapter 17.

Let’s compare the advantages of a PKI over a key server system:

A key server requires everybody to be online in real time. If you can’t
reach the key server, you can’t do anything at all. There is no way Alice
and Bob can recognize each other. A PKI gives you some advantages.
If you use expiration for revocation, you only need to contact the
central server once in a while; for applications that use certificates with
validity periods of hours, the requirement for real-time online access
and processing is significantly relaxed. This is useful for non-interactive
applications like e-mail. This is also useful for certain authorization
systems, or cases where communications are expensive. Even if you use
a CRL database, you might have rules on how to proceed if the CRL
database cannot be reached. Credit card systems have rules like this. If
you can’t get automatic authorization, any transaction up to a certain
amount is okay. These rules would have to be based on a risk analysis,
including the risk of a denial-of-service attack on the CRL system, but at
least you get the option of proceeding; the key server solution provides
no alternatives.

The key server is a single point of failure. Distributing the key server
is difficult, since it contains all the keys in the system. You really don’t
want to start spreading your secret keys throughout the world. The

Chapter 19 ■ PKI Reality 293

CRL database, in contrast, is much less security-critical and is easier to
distribute. The fast-expiration solution makes the CA a point of failure.
But large systems almost always have a hierarchical CA, which means
that the CA is already distributed, and failures affect only a small part of
the system.

In theory, a PKI should provide you with nonrepudiation. Once Alice
has signed a message with her key, she should not be able to later deny
that she signed the message. A key server system can never provide this;
the central server has access to the same key that Alice uses and can
therefore forge an arbitrary message to make it look as if Alice sent it.
In real life, nonrepudiation doesn’t work because people cannot store
their secret keys sufficiently well. If Alice wants to deny that she signed
a message, she is simply going to claim that a virus infected her machine
and stole her private key.

The most important key of a PKI is the CA root key. This key does not
have to be stored in a computer that is online. Rather, it can be stored
securely and only loaded into an offline computer when needed. The root
key is only used to sign the certificates of the sub-CAs, and this is done
only rarely. In contrast, the key server system has the master key material
in an online computer. Computers that are offline are much harder to
attack than those that are online, so this makes a PKI potentially more
secure.

So there are a few advantages to PKIs. They are nice to have, but none
of them gives you a really critical advantage in some environments. These
advantages only come at a stiff price. A PKI is much more complex than
a key server system, and the public-key computations require a lot more
computational power.

19.10 What to Choose

So how should you set up your key management system? Should you use a
key server-type scheme or a PKI-type scheme? As always, this depends on
your exact requirements, the size of your system, your target application, and
so on.

For small systems, the extra complexity of a PKI is in general not warranted.
We think it is easier to use the key server approach. This is mainly because the
advantages of a PKI over the key server approach are more relevant for large
installations than for small ones.

For large systems, the additional flexibility of a PKI is still attractive. A PKI
can be a more distributed system. Credential-style extensions allow the central

294 Part IV ■ Key Management

CA to limit the authority of the sub-CAs. This in turn makes it easy to set
up small sub-CAs that cover a particular area of operations. As the sub-CA
is limited in the certificates it can issue by the certificate on its own key, the
sub-CA cannot pose a risk to the system as a whole. For large systems, such
flexibility and risk limitation are important.

If you are building a large system, we would advise you to look very
seriously at a PKI solution, but do compare it to a key server solution. You’ll
have to see if the PKI advantages outweigh its extra cost and complexity. One
problem might be that you really want to use credential-style limitations for
your sub-CAs. To do this, you must be able to express the limitations in a
logical framework. There is no generic framework in which this can be done,
so this ends up being a customer-specific part of the design. It probably also
means that you cannot use an off-the-shelf product for your PKI, as they are
unlikely to have appropriate certificate restriction language.

19.11 Exercises

Exercise 19.1 What bad things could happen if Alice uses the same keys
with multiple PKIs?

Exercise 19.2 Suppose a system employs devices that are each capable of
storing a list of 50 CRL entries. How can this design decision lead to security
problems?

Exercise 19.3 Suppose a system uses a PKI with a CRL. A device in that
system is asked to verify a certificate but cannot access the CRL database
because of a denial-of-service attack. What are the possible courses of action
for the device, and what are the advantages and disadvantages of each course
of action?

Exercise 19.4 Compare and contrast the advantages and disadvantages of
PKIs and key servers. Describe one example application for which you would
use a PKI. Describe one example application for which you would use a key
server. Justify each of your decisions.

Exercise 19.5 Compare and contrast the advantages and disadvantages of
CRLs, fast revocation, and online certificate verification. Describe one example
application for which you would use a CRL. Describe one example application
for which you would use fast revocation. Describe one example application
for which you would use online certificate verification. Justify each of your
decisions.

C H A P T E R

20

PKI Practicalities

In practice, if you need a PKI, you will have to decide whether to buy it or
build it. We’ll now discuss some of the practical considerations that occur
when designing a PKI system.

20.1 Certificate Format

A certificate is just a data type with multiple required and optional fields. It is
important that the encoding of a particular data structure be unique, because in
cryptography we often hash a data structure to sign it or compare it. A format
like XML, which allows several representations of the same data structure,
requires extra care to ensure that signatures and hashes always work as they
should. Although we dislike their complexity, X.509 certificates are another
alternative.

20.1.1 Permission Language
For all but the simplest of PKI systems, you really want to be able to restrict the
certificates that a sub-CA can issue. To do that, you need to encode a restriction
into the sub-CA’s certificate, which in turn requires a language in which to
express the key’s permissions. This is probably the hardest point of the PKI
design. The restrictions you are going to need depend on your application. If
you can’t find sensible restrictions, you should rethink your decision to use
a PKI. Without restrictions in the certificates, every sub-CA effectively has a

295

296 Part IV ■ Key Management

master key—and that is a bad security design. You could restrict yourself to
a single CA, but then you would lose many of the advantages of a PKI over a
key server system.

20.1.2 The Root Key
To do anything, the CA must have a public/private key pair. Generating
this pair is straightforward. The public key needs to be distributed to every
participant, together with some extra data, such as the validity period of
this key. To simplify the system, this is normally done using a self-certifying
certificate, which is a rather odd construction. The CA signs a certificate on
its own public key. Although it is called self-certifying, it is nothing of the
sort. The name self-certification is a historical misnomer that we are stuck
with. The certificate doesn’t certify the key at all, and it proves nothing about
the security properties of the key, because anyone can create a public key
and self-certify it. What the self-certification does is tie additional data to the
public key. The permission list, validity period, human contact data, etc., are
all included in the self-certificate. The self-certificate uses the same data format
as all other certificates in the system, and all participants can reuse the existing
code to check this additional data. The self-certificate is called the root certificate
of the PKI.

The next step is to distribute the root certificate to all the system’s partici-
pants in a secure manner. Everybody must know the root certificate, and
everybody must have the right root certificate.

The first time a computer joins the PKI, it will have to be given the root
certificate in a secure manner. This can be as simple as pointing the computer
at a local file or a file on a trusted Web server, and telling the machine that this
is the root certificate for the PKI in question. Cryptography cannot help with
this initial distribution of the root certificate, because there are no keys that can
be used to provide the authentication. The same situation occurs if the private
key of the CA is ever compromised. Once the root key is no longer secure, an
entirely new PKI structure will have to be initialized, and this involves giving
every participant the root certificate in a secure manner. This should provide
a good motivation for keeping the root key secure.

The root key expires after a while, and the central CA will have to issue a
new key. Distributing the new root certificate is easier. The new root certificate
can be signed with the old root key. Participants can download the new root
certificate from an insecure source. As it is signed with the old root key, it
cannot be modified. The only possible problem is if a participant does not get
the new root certificate. Most systems overlap the validity of the root keys by
a few months to allow sufficient time for switching to the new root key.

There is a small implementation issue here. The new CA root certificate
should probably have two signatures—one with the old root key so users can
recognize the new root certificate, and one (self-certifying) signature with the

Chapter 20 ■ PKI Practicalities 297

new root key to be used by new devices that are introduced after the old key
expires. You can do this either by including support for multiple signatures in
your certificate format, or by simply issuing two separate certificates for the
same new root key.

20.2 The Life of a Key

Let’s consider the lifetime of a single key. This can be the CA’s root key or any
other public key. A key goes through several phases in its life. Not all keys
require all phases, depending on the application. As an example, we’ll use
Alice’s public key.

Creation The first step in the life of a key is creation. Alice creates a pub-
lic/private key pair and stores the private part in a secure manner.

Certification The next step is certification. Alice takes her public key to the
CA or the sub-CA and has it certify her key. This is the point where the
CA decides which permissions to give to Alice’s public key.

Distribution Depending on the application, Alice might have to distribute
her certified public key before she can use it. If, for example, Alice uses
her key for signatures, each party that could potentially receive Alice’s
signature should have her public key first. The best way to do this is to
distribute the key for a while before Alice uses it the first time. This is
especially important for a new root certificate. When the CA switches
to a new root key, for example, everybody should be given the chance
to learn the new root certificate before being presented with a certificate
signed with the new key.

Whether you need a separate distribution phase depends on your appli-
cation. If you can avoid it, do so. A separate distribution phase has to be
explained to the users and becomes visible in the user interface. That, in
turn, creates lots of extra work, because many users won’t understand
what it means and will not use the system properly.

Active use The next phase is when Alice uses her key actively for transactions.
This is the normal situation for a key.

Passive use After the active use phase, there must be a period of time where
Alice no longer uses her key for new transactions, but everybody still
accepts the key. Transactions are not instantaneous; sometimes they get
delayed. A signed e-mail could very well take a day or two to reach
its destination. Alice should stop using her key actively and allow a
reasonable period for all pending transactions to be completed before the
key expires.

Expired Finally, the key expires and it is not considered to be valid anymore.

298 Part IV ■ Key Management

How are the key phases defined? The most common solution is to include
explicit times for each phase transition in the certificate. The certificate contains
the start of the distribution phase, the start of the active use phase, the start of
the inactive use phase, and the expiration time. Unfortunately, all of these times
have to be presented to the user, because they affect the way the certificate
works, and this is probably too complicated for ordinary users to handle.

A more flexible scheme is to have a central database that contains the phase
of each key, but this introduces a whole new raft of security issues, which
we’d rather not do. And if you have a CRL, it can override the chosen phase
periods and expire a key immediately.

Things become even more complicated if Alice wants to use the same
key in several different PKIs. In general, we think this is a bad idea, but
sometimes it cannot be avoided. But extra precautions need to be taken if it
cannot be avoided. Suppose Alice uses a small tamper-resistant module that
she carries with her. This module contains her private keys and performs the
necessary computations for a digital signature. Such modules have a limited
storage capacity. Alice’s certificates on her public key can be stored on the
corporate intranet without size limitations, but the small module cannot store
an unlimited number of private keys. In situations like this, Alice ends up
using the same key for multiple PKIs. It also implies that the key lifetime
schedule should be similar for all the PKIs Alice uses. This might be difficult
to coordinate.

If you ever work on a system like this, make sure that a signature used in
one PKI cannot be used in another PKI. You should always use a single digital
signature scheme, such as the one explained in Section 12.7. The signed string
of bytes should not be the same in two different PKI systems or in two different
applications. The simplest solution is to include data in the string to be signed
that uniquely identifies the application and the PKI.

20.3 Why Keys Wear Out

We’ve mentioned several times that keys have to be replaced regularly, but
why is this?

In a perfect world, a key could be used for a very long time. An attacker
who has no system weaknesses to work with is reduced to doing exhaus-
tive searches. In theory, that reduces our problem to one of choosing large
enough keys.

The real world isn’t perfect. There are always threats to the secrecy of a
key. The key must be stored somewhere, and an attacker might try to get at
it. The key must also be used, and any use poses another threat. The key has

Chapter 20 ■ PKI Practicalities 299

to be transported from the storage location to the point where the relevant
computations are done. This will often be within a single piece of equipment,
but it opens up a new avenue of attack. If the attacker can eavesdrop on the
communication channel used for this transport, then she gets a copy of the
key. Then there is the cryptographic operation that is done with the key. There
are no useful cryptographic functions that have a full proof of security. At
their core, they are all based on arguments along the lines of: ‘‘Well, none of
us has found a way to attack this function, so it looks pretty safe.’’1 And as we
have already discussed, side-channels can leak information about keys.

The longer you keep a key, and the more you use it, the higher the chance
an attacker might manage to get your key. If you want to limit the chance of
the attacker knowing your key, you have to limit the lifetime of the key. In
effect, a key wears out.

There is another reason to limit the lifetime of a key. Suppose something
untoward happens and the attacker gets the key. This breaks the security of
the system and causes damage of some form. (Revocation is only effective if
you find out the attacker has the key; a clever attacker would try to avoid
detection.) This damage lasts until the key is replaced with a new key, and even
then, data previously encrypted under the old key will remain compromised.
By limiting the lifetime of a single key, we limit the window of exposure to an
attacker who has been successful.

There are thus two advantages to short key lives. They reduce the chance
that an attacker gets a key, and they limit the damage that is done if he
nevertheless succeeds.

So what is a reasonable lifetime? That depends on the situation. There is a
cost to changing keys, so you don’t want to change them too often. On the
other hand, if you only change them once a decade, you cannot be sure that the
change-to-a-new-key function will work at the end of the decade. As a general
rule, a function or procedure that is rarely used or tested is more likely to fail.2

Probably the biggest danger in having long-term keys is that the change-key
function is never used, and therefore will not work well when it is needed. A
key lifetime of one year is probably a reasonable maximum.

Key changes in which the user has to be involved are relatively expensive,
so they should be done infrequently. Reasonable key lifetimes are from one
month and upwards. Keys with shorter lifetimes will have to be managed
automatically.

1What is often called a ‘‘proof of security’’ for cryptographic functions is actually not a complete
proof. These proofs are generally reductions: if you can break function A, you can also break
function B. They are valuable in allowing you to reduce the number of primitive operations you
have to assume are secure, but they do not provide a complete proof of security.
2This is a generally applicable truism and is the main reason you should always test emergency
procedures, such as fire drills.

300 Part IV ■ Key Management

20.4 Going Further

Key management is not just a cryptographic problem. It is a problem of
interfacing with the real world. The specific choice of which PKI to use, along
with how the PKI is configured, will depend on the specifics of the application
and the environment in which it is supposed to be deployed. We have outlined
the key issues to consider.

20.5 Exercises

Exercise 20.1 What fields do you think should appear in a certificate, and
why?

Exercise 20.2 What are the root SSL keys hard-coded within your Web
browser of choice? When were these keys created? When do they expire?

Exercise 20.3 Suppose you have deployed a PKI, and that the PKI uses
certificates in a certain fixed format. You need to update your system. Your
updated system needs to be backward compatible with the original version of
the PKI and its certificates. But the updated system also needs certificates with
extra fields. What problems could arise with this transition? What steps could
you have taken when originally designing your system to best prepare for an
eventual transition to a new certificate format?

Exercise 20.4 Create a self-signed certificate using the cryptography packages
or libraries on your machine.

Exercise 20.5 Find a new product or system that uses a PKI. This might
be the same product or system that you analyzed for Exercise 1.8. Conduct a
security review of that product or system as described in Section 1.12, this time
focusing on the security and privacy issues surrounding the use of the PKI.

C H A P T E R

21

Storing Secrets

We discussed the problem of storing transient secrets, such as session keys,
back in Section 8.3. But how do we store long-term secrets, such as passwords
and private keys? We have two opposing requirements. First of all, the secret
should be kept secret. Second, the risk of losing the secret altogether (i.e., not
being able to find the secret again) should be minimal.

21.1 Disk

One of the obvious ideas is to store the secret on the hard drive in the
computer or on some other permanent storage medium. This works, but only
if the computer is kept secure. If Alice stores her keys (without encryption) on
her PC, then anyone who uses her PC can use her keys. Most PCs are used by
other people, at least occasionally. Alice won’t mind letting someone else use
her PC, but she certainly doesn’t want to grant access to her bank account at
the same time! Another problem is that Alice probably uses several computers.
If her keys are stored on her PC at home, she cannot use them while at work
or while traveling. And should she store her keys on her desktop machine at
home or on her laptop? We really don’t want her to copy the keys to multiple
places; that only weakens the system further.

A better solution would be for Alice to store her keys on her PDA or smart
phone. Such a device is less likely to be lent out, and it is something that she
takes with her everywhere she goes. But small devices such as these can also
easily be lost or stolen, and we don’t want someone later in possession of the
device to have access to the secret keys.

301

302 Part IV ■ Key Management

You’d think that security would improve if we encrypt the secrets. Sure,
but with what? We need a master key to encrypt the secrets with, and that
master key needs to be stored somewhere. Storing it next to the encrypted
secrets doesn’t give you any advantage. This is a good technique to reduce
the number and size of secrets though, and it is widely used in combination
with other techniques. For example, a private RSA key is several thousand bits
long, but by encrypting and authenticating it with a symmetric key, we can
reduce the size of the required secure storage by a significant factor.

21.2 Human Memory

The next idea is to store the key in Alice’s brain. We get her to memorize
a password and encrypt all the other key material with this password. The
encrypted key material can be stored anywhere—maybe on a disk, but it can
also be stored on a Web server where Alice can download it to whatever
computer she is using at the moment.

Humans are notoriously bad at memorizing passwords. If you choose very
simple passwords, you don’t get any security. There are simply not enough
simple passwords for them to be really secret: the attacker can just try them all.
Using your mother’s maiden name doesn’t work very well; her name is quite
often public knowledge—and even if it isn’t, there are probably only a few
hundred thousand surnames that the attacker has to try to find the right one.

A good password must be unpredictable. In other words, it must contain
a lot of entropy. Normal words, such as passwords, do not contain much
entropy. There are about half a million English words—and that is counting
all the very long and obscure words in an unabridged dictionary—so a single
word as password provides at most 19 bits of entropy. Estimates of the amount
of entropy per character in English text vary a bit, but are in the neighborhood
of 1.5–2 bits per letter.

We’ve been using 256-bit secret keys throughout our systems to achieve
128 bits of security. In most places, using a 256-bit key has very little additional
cost. However, in this situation the user has to memorize the password (or
key), and the additional cost of larger keys is high. Trying to use passwords
with 256 bits of entropy is too cumbersome; therefore, we will restrict ourselves
to passwords with only 128 bits of entropy.1

Using the optimistic estimate of 2 bits per character, we’d need a password
of 64 characters to get 128 bits of entropy. That is unacceptable. Users will
simply refuse to use such long passwords.

1For the mathematicians: passwords chosen from a probability distribution with 128 bits of
entropy.

Chapter 21 ■ Storing Secrets 303

What if we compromise and accept 64 bits of security? That is already very
marginal. At 2 bits of entropy per character, we need the password to be at
least 32 characters long. Even that is too long for users to deal with. Don’t
forget, most real-world passwords are only 6–8 letters long.

You could try to use assigned passwords, but have you ever tried to use a
system where you are told that your password is ‘‘7193275827429946905186’’?
Or how about ‘‘aoekjk3ncmakwe’’? Humans simply can’t remember such
passwords, so this solution doesn’t work. (In practice, users will write the
password down, but we’ll discuss that in the next section.)

A much better solution is to use a passphrase. This is similar to a password.
In fact, they are so similar that we consider them equivalent. The difference is
merely one of emphasis: a passphrase is much longer than a password.

Perhaps Alice could use the passphrase, ‘‘Pink curtains meander across the
ocean.’’ That is nonsensical, but fairly easy to remember. It is also 38 characters
long, so it probably contains about 57–76 bits of entropy. If Alice expands it to
‘‘Pink dotty curtains meander over seas of Xmas wishes,’’ she gets 52 characters
for a very reasonable key of 78–104 bits of entropy. Given a keyboard, Alice
can type this passphrase in a few seconds, which is certainly much faster than
she can type a string of random digits. We rely on the fact that a passphrase
is much easier to memorize than random data. Many mnemonic techniques
are based on the idea of converting random data to things much closer to our
passphrases.

Some users don’t like to do a lot of typing, so they choose their passphrases
slightly differently. How about ‘‘Wtnitmtstsaaoof,ottaaasot,aboet’’? This looks
like total nonsense; that is, until you think of it as the first letters of the words
of a sentence. In this case we used a sentence from Shakespeare: ‘‘Whether ’tis
nobler in the mind to suffer the slings and arrows of outrageous fortune, or
to take arms against a sea of troubles, and by opposing end them.’’ Of course,
Alice should not use a sentence from literature; literary texts are too accessible
for an attacker, and how many suitable sentences would there be in the books
on Alice’s bookshelf? Instead, she should invent her own sentence, one that
nobody else could possibly think of.

Compared to using a full passphrase, the initial-letters-from-each-word
technique requires a longer sentence, but it requires less typing for good
security because the keystrokes are more random than consecutive letters in a
sentence. We don’t know of any estimate for the number of bits of entropy per
character for this technique.

Passphrases are certainly the best way of storing a secret in a human brain.
Unfortunately, many users still find it difficult to use them correctly. And
even with passphrases, it is extremely difficult to get 128 bits of entropy in the
human brain.

304 Part IV ■ Key Management

21.2.1 Salting and Stretching
To squeeze the most security out of a limited-entropy password or passphrase,
we can use two techniques that sound as if they come from a medieval torture
chamber. These are so simple and obvious that they should be used in every
password system. There is really no excuse not to use them.

The first is to add a salt. This is simply a random number that is stored
alongside the data that was encrypted with the password. If you can, use a
256-bit salt.

The next step is to stretch the password. Stretching is essentially a very long
computation. Let p be the password and s be the salt. Using any cryptographi-
cally strong hash function h, we compute

x0 := 0
xi := h(xi−1 ‖ p ‖ s) for i = 1, . . . , r
K := xr

and use K as the key to actually encrypt the data. The parameter r is the
number of iterations in the computation and should be as large as practical. (It
goes without saying that xi and K should be 256 bits long.)

Let’s look at this from an attacker’s point of view. Given the salt s and some
data that is encrypted with K, you try to find K by trying different passwords.
Choose a particular password p, compute the corresponding K, decrypt the
data and check whether it makes sense and passes the associated integrity
checks. If it doesn’t, then p must have been false. To check a single value for p,
you have to do r different hash computations. The larger r is, the more work
the attacker has to do.

It is sometimes useful to be able to check whether the derived key is correct
before decrypting the data. When this is helpful, a key check value can be
computed. For example, the key check value could be h(0 ‖ xr−1 ‖ p ‖ s), which
because of the properties of hash functions is independent from K. This key
check value would be stored alongside the salt and could be used to check the
password before decrypting the data with K.

In normal use, the stretching computation has to be done every time a
password is used. But remember, this is at a point in time where the user has
just entered a password. It has probably taken several seconds to enter the
password, so using 200 ms for password processing is quite acceptable. Here is
our rule to choose r: choose r such that computing K from (s, p) takes 200–1000
ms on the user’s equipment. Computers get faster over time, so r should be
increasing over time as well. Ideally, you determine r experimentally when
the user first sets the password and store r alongside s. (Do make sure that r is
a reasonable value, not too small or too large.)

Chapter 21 ■ Storing Secrets 305

How much have we gained? If r = 220 (just over a million), the attacker has
to do 220 hash computations for each password she tries. Trying 260 passwords
would take 280 hash computations, so effectively using r = 220 makes the
effective key size of the password 20 bits longer. The larger r you choose, the
larger the gain.

Look at it another way. What r does is stop the attacker from benefiting from
faster and faster computers, because the faster computers get, the larger r gets,
too. It is a kind of Moore’s law compensator, but only in the long run. Ten
years from now, the attacker can use the next decade’s technology to attack
the password you are using today. So you still need a decent security margin
and as much entropy in the password as you can get.

This is another reason to use a key negotiation protocol with forward secrecy.
Whatever the application, it is quite likely that Alice’s private keys end up
being protected by a password. Ten years from now, the attacker will be able
to search for Alice’s password and find it. But if the key that is encrypted with
the password was only used to run a key negotiation protocol with forward
secrecy, the attacker will find nothing of value. Alice’s key is no longer valid
(it has expired), and knowing her old private key does not reveal the session
keys used ten years ago.

The salt stops the attacker from taking advantage of an economy of scale
when she is attacking a large number of passwords simultaneously. Suppose
there are a million users in the system, and each user stores an encrypted
file that contains her keys. Each file is encrypted with the user’s stretched
password. If we did not use a salt, the attacker could attack as follows: guess
a password p, compute the stretched key K, and try to decrypt each of the key
files using K. The stretch function only needs to be computed once for every
password, and the resulting stretched key can be used in an attempt to decrypt
each of the files.

This is no longer possible when we add the salt to the stretching function.
All the salts are random values, so each user will use a different salt value.
The attacker now has to compute the stretching function once for each
password/file combination, rather than once for each password. This is a
lot more work for the attacker, and it comes at a very small price for the
users of the system. Since bits are cheap, for simplicity we suggest using a
256-bit salt.

By the way, do take care when you do this. We once saw a system that
implemented all this perfectly, but then some programmer wanted to improve
the user interface by giving the user a faster response as to whether the
password he had typed was correct or not. So he stored a checksum on the
password, which defeated the entire salting and stretching procedure. If the
response time is too slow, you can reduce r, but make sure there is no way to

306 Part IV ■ Key Management

recognize whether a password is correct or not without doing at least r hash
computations.

21.3 Portable Storage

The next idea is to store key material outside the computer. The simplest form
of storage is a piece of paper with passwords written on it. Most people have
that in one form or another, even for noncryptographic systems like websites.
Most users have at least half a dozen passwords to remember, and that is
simply too much, especially for systems where you use your password only
rarely. So to remember passwords, users write them down. The limitation to
this solution is that the password still has to be processed by the user’s eyes,
brain, and fingers every time it is used. To keep user irritation and mistakes
within reasonable bounds, this technique can only be used with relatively
low-entropy passwords and passphrases.

As a designer, you don’t have to design or implement anything to use this
storage method. Users will use it for their passwords, no matter what rules
you make and however you create your password system.

A more advanced form of storage would be portable memory of some form.
This could be a memory-chip card, a magnetic stripe card, a USB stick, or any
other kind of digital storage. Digital storage systems are always large enough
to store at least a 256-bit secret key, so we can eliminate the low-entropy
password. The portable memory becomes very much like a key. Whoever
holds the key has access, so this memory needs to be held securely.

21.4 Secure Token

A better—and more expensive—solution is to use something we call a secure
token. This is a small computer that Alice can carry around. The external shape
of tokens can differ widely, ranging from a smart card (which looks just like
a credit card), to an iButton, USB dongle, or PC Card. The main properties
are nonvolatile memory (i.e., a memory that retains its data when power is
removed) and a CPU.

The secure token works primarily as a portable storage device, but with a
few security enhancements. First of all, access to the stored key material can
be limited by a password or something similar. Before the secure token will
let you use the key, you have to send it the proper password. The token can
protect itself against attackers who try a brute-force search for the password
by disabling access after three or five failed attempts. Of course, some users
mistype their password too often, and then their token has to be resuscitated,
but you can use longer, higher-entropy passphrases or keys that are far more
secure for the resuscitation.

Chapter 21 ■ Storing Secrets 307

This provides a multilevel defense. Alice protects the physical token; for
example, by keeping it in her wallet or on her key chain. An attacker has to
steal the token to get anywhere, or at least get access to it in some way. Then the
attacker needs to either physically break open the token and extract the data,
or find the password to unlock the token. Tokens are often tamper-resistant to
make a physical attack more difficult.2

Secure tokens are currently one of the best and most practical methods of
storing secret keys. They can be relatively inexpensive and small enough to be
carried around conveniently.

One problem in practical use is the behavior of the users. They’ll leave
their secure token plugged into their computer when going to lunch or to a
meeting. As users don’t want to be prompted for their password every time,
the system will be set to allow hours of access from the last time the password
was entered. So all an attacker has to do is walk in and start using the secret
keys stored in the token.

You can try to solve this through training. There’s the ‘‘corporate security
in the office’’ video presentations, the embarrassingly bad ‘‘take your token
to lunch’’ poster that isn’t funny at all, and the ‘‘if I ever again find your
token plugged in unattended, you are going to get another speech like this’’
speeches. But you can also use other means. Make sure the token is not only
the key to access digital data, but also the lock to the office doors, so users
have to take their token to get back into their office. Fix the coffee machine
to only give coffee after being presented with a token. These sorts of tactics
motivate employees to bring their token to the coffee machine and not leave it
plugged into their computer while they are away. Sometimes security consists
of silly measures like these, but they work far better than trying to enforce
take-your-token-with-you rules by other means.

21.5 Secure UI

The secure token still has a significant weakness. The password that Alice uses
has to be entered on the PC or some other device. As long as we trust the PC,
this is not a problem, but we all know PCs are not terribly secure, to say the
least. In fact, the whole reason for not storing Alice’s keys on the PC is because
we don’t trust it enough. We can achieve a much better security if the token
itself has a secure built-in UI. Think of a secure token with a built-in keyboard
and display. Now the password, or more likely a PIN, can be entered directly
into the token without the need to trust an outside device.

2They are tamper-resistant, not tamper-proof; tamper-resistance merely makes tampering more
expensive. Tamper-responding devices may detect tampering and self-destruct.

308 Part IV ■ Key Management

Having a keyboard on the token protects the PIN from compromise. Of
course, once the PIN has been typed, the PC still gets the key, and then it can
do anything at all with that key. So we are still limited by the security of the
whole PC.

To stop this, we have to put the cryptographic processes that involve the key
into the token. This requires application-specific code in the token. The token
is quickly growing into a full-fledged computer, but now a trusted computer
that the user carries around. The trusted computer can implement the security-
critical part of each application on the token itself. The display now becomes
crucial, since it is used to show the user what action he is authorizing by
typing his PIN. In a typical design, the user uses the PC’s keyboard and mouse
to operate the application. When, for example, a bank payment has to be
authorized, the PC sends the data to the token. The token displays the amount
and a few other transaction details, and the user authorizes the transaction
by typing her PIN. The token then signs the transaction details, and the PC
completes the rest of the transaction.

At present, tokens with a secure UI are too expensive for most applications.
Maybe the closest thing we have is a PDA or smart phone. However, people
download programs onto their PDAs and phones, and these devices are not
designed from the start as secure units, so perhaps these devices are not
significantly more secure than a PC. We hope that tokens with secure UIs
become more prevalent in the future.

21.6 Biometrics

If we want to get really fancy, we can add biometrics to the mix. You could
build something like a fingerprint or iris scanner into the secure token. At the
moment, biometric devices are not very useful. Fingerprint scanners can be
made for a reasonable price, but the security they provide is generally not very
good. In 2002, cryptographer Tsutomu Matsumoto, together with three of his
students, showed how he was able to consistently fool all the commercially
available fingerprint scanners he could buy, using only household and hobby
materials [87]. Even making a fake finger from a latent fingerprint (i.e., the
type you leave on every shiny surface) is nothing more than a hobby project
for a clever high-school student.

The real shock to us wasn’t that the fingerprint readers could be fooled. It
was that fooling them was so incredibly simple and cheap. What’s worse, the
biometrics industry has been telling us how secure biometric identification
is. They never told us that forging fingerprints was this easy. Then suddenly
a mathematician (not even a biometrics expert) comes along and blows the

Chapter 21 ■ Storing Secrets 309

whole process out of the water. A recent 2009 paper shows that these issues
are still a problem [3].

Still, even though they are easy to fool, fingerprint scanners can be very
useful. Suppose you have a secure token with a small display, a small keyboard,
and a fingerprint scanner. To get at the key, you need to get physical control
of the token, get the PIN, and forge the fingerprint. That is more work for the
attacker than any of our previous solutions. It is probably the best practical
key storage scheme that we can currently make. On the other hand, this secure
token is going to be rather expensive, so it won’t be used by many people.

Fingerprint scanners could also be used on the low-security side rather than
the high-security side. Touching a finger to a scanner can be done very quickly,
and it is quite feasible to ask the user to do that relatively often. A fingerprint
scanner could thus be used to increase the confidence that the proper person
is in fact authorizing the actions the computer is taking. This makes it more
difficult for employees to lend their passwords to a colleague. Rather than
trying to stop sophisticated attackers, the fingerprint scanner could be used
to stop casual breaches of the security rules. This might be a more important
contribution to security than trying to use the scanner as a high-security
device.

21.7 Single Sign-On

Because the average user has so many passwords, it becomes very appealing
to create a single sign-on system. The idea is to give Alice a single master
password, which in turn is used to encrypt all the different passwords from
her different applications.

To do this well, all the applications must talk to the single sign-on system.
Any time an application requires a password, it should not ask the user, but
rather the single sign-on program, for it. There are numerous challenges for
making this a reality on a wide scale. Just think of all the different applications
that would have to be changed to automatically get their passwords from the
single sign-on system.

A simpler idea is to have a small program that stores the passwords in a
text file. Alice types her master password and then uses the copy and paste
functionality to copy the passwords from the single sign-on program to the
application. Bruce designed a free program called Password Safe to do exactly
this. But it’s just an encrypted digital version of the piece of paper that Alice
writes her passwords on. It is useful, and an improvement on the piece of
paper if you always use the same computer, but not the ultimate solution that
the single sign-on idea would really like to be.

310 Part IV ■ Key Management

21.8 Risk of Loss

But what if the secure token breaks? Or the piece of paper with the passwords
is left in a pocket and run through the washing machine? Losing secret keys
is always a bad thing. The cost can vary from having to reregister for each
application to get a new key, to permanently losing access to important data.
If you encrypt the PhD thesis you have been working on for five years with
a secret key and then lose the key, you no longer have a PhD thesis. You just
have a file of random-looking bits. Ouch!

It is hard to make a key storage system both easy to use and highly reliable.
A good rule of thumb, therefore, is to split these functions. Keep two copies of
the key—one that is easy to use, and another one that is very reliable. If the
easy-to-use system ever forgets the key, you can recover it from the reliable
storage system. The reliable system could be very simple. How about a piece
of paper in a bank vault?

Of course, you want to be careful with your reliable storage system. By
design, it will quickly be used to store all of your keys, and that would make
it a very tempting target for an attacker. You’ll have to do a risk analysis to
determine whether it is better to have a number of smaller reliable key storage
places or a single large one.

21.9 Secret Sharing

There are some keys that you need to store super-securely—for example,
the private root key of your CA. As we have seen, storing a secret in a
secure manner can be difficult. Storing it securely and reliably is even more
difficult.

There is one cryptographic solution that can help in storing secret keys. It
is called secret sharing [117], which is a bit of a misnomer because it implies
that you share the secret with several people. You don’t. The idea is to take
the secret and split it into several different shares. It is possible to do this
in such a way that, for example, three out of the five shares are needed to
recover the secret. You then give one share to each of the senior people in the
IT department. Any three of them can recover the secret. The real trick is to
do it in a manner such that any two people together know absolutely nothing
about the key.

Secret sharing systems are very tempting from an academic point of view.
Each of the shares is stored using one of the techniques we talked about before.
A k-out-of-n rule combines high security (at least k people are necessary to
retrieve the key) with high reliability (n − k of the shares may be lost without
detrimental effect). There are even fancier secret sharing schemes that allow

Chapter 21 ■ Storing Secrets 311

more complex access rules, along the lines of (Alice and Bob) or (Alice and
Carol and David).

In real life, secret sharing schemes are rarely used because they are too
complex. They are complex to implement, but more importantly, they are
complex to administrate and operate. Most companies do not have a group
of highly responsible people who distrust each other. Try telling the board
members that they will each be given a secure token with a key share, and
that they will have to show up at 3 a.m. on a Sunday in an emergency. Oh yes,
and they are not to trust each other, but to keep their own shares secure even
from other board members. They will also need to come down to the secure
key-management room to get a new key share every time someone joins or
leaves the board. In practice, this means that using the board members is out.
The CEO isn’t very useful for holding a share either, because the CEO tends
to travel quite a bit. Before you know it, you are down to the two or three
senior IT management people. They could use a secret sharing scheme, but the
expense and complexity make this unattractive. Why not use something much
simpler, such as a safe? Physical solutions such as safes or bank vaults have
several advantages. Everybody understands how they work, so you don’t
need extensive training. They have already been tested extensively, whereas
the secret-reconstruction process is hard to test because it requires such a large
number of user interactions—and you really don’t want to have a bug in the
secret-reconstruction process that results in you losing the root key of your CA.

21.10 Wiping Secrets

Any long-term secret that we store eventually has to be wiped. As soon as
a secret is no longer needed, its storage location should be wiped to avoid
any future compromise. We discussed the problems of wiping memory in
Section 8.3. Wiping long-term secrets from permanent storage is much harder.

The schemes for storing long-term secrets that we discussed in this chapter
use a variety of data storage technologies, ranging from paper to hard disks
to USB sticks. None of these storage technologies comes with a documented
wiping functionality that guarantees the data it stored is no longer recoverable.

21.10.1 Paper
Destroying a password written down on paper is typically done by destroying
the paper itself. One possible method is to burn the paper, and then grind the
ashes into a fine powder, or mix the ashes into a pulp with just a little bit of
water. Shredding is also an option, although many shredders leave the paper
in large enough pieces that reconstructing a page is relatively easy.

312 Part IV ■ Key Management

21.10.2 Magnetic Storage
Magnetic media are very hard to wipe. There is surprisingly little literature
about how to do this; the best paper we know of is by Peter Gutmann [57],
although the technical details of that paper are probably outdated now.

Magnetic media store data in tiny magnetic domains; the direction of mag-
netization of a domain determines the data it encodes. When the data is
overwritten, the magnetization directions are changed to reflect the new data.
But there are several mechanisms that prevent the old data from being com-
pletely lost. The read/write head that tries to overwrite old data is never exactly
aligned and will tend to leave some parts of the old data untouched. Overwrit-
ing does not completely destroy old data. You can think of it as repainting a wall
with a single coat of paint. You can still vaguely see the old coat of paint under
it. The magnetic domains can also migrate away from the read/write head
either to the side of the track or deeper down into the magnetic material, where
they can linger for a long time. Overwritten data is typically not recoverable
with the normal read/write head, but an attacker who takes apart a disk drive
and uses specialized equipment might be able to retrieve some or all of the
old data.

In practice, repeatedly overwriting a secret with random data is probably
the best option. There are a few points to keep in mind:

Each overwrite should use fresh random data. Some researchers have
developed particular data patterns that are supposed to be better at wip-
ing old data, but the choice of patterns depends on the exact details of
the disk drive. Random data might require more overwriting passes
for the same effect, but it works in all situations and is therefore
safer.

Overwrite the actual location that stored the secret. If you just change a
file by writing new data to it, the file system might decide to store the
new data in a different location, which would leave the original data
intact.

Make sure that each overwrite pass is actually written to disk and not
just to one of the disk caches. Disk drives that have their own write-cache
are a particular danger, as they might cache the new data and optimize
the multiple overwrite operations into a single write.

It is probably a good idea to wipe an area that begins well before the
secret data and that ends well after it. Because the rotational speed of
a disk drive is never perfectly constant, the new data will not align
perfectly with the old data.

Chapter 21 ■ Storing Secrets 313

As far as we know, there is no reliable information on how many overwrite
passes are required, but there is no reason to choose a small number. You only
have to wipe a single key. (If you have a large amount of secret data, store that
data encrypted under a key, and only wipe the key.) We consider 50 or 100
overwrites with random data perfectly reasonable.

It is theoretically possible to erase a tape or disk using a degaussing machine.
However, modern high-density magnetic storage media resist degaussing to
such an extent that this is not a reliable wiping method. In practice, users do
not have access to degaussing machines, so this is a nonissue.

Even with extensive overwriting, you should expect that a highly specialized
and well-funded attacker could still recover the secret from the magnetic
medium. To completely destroy the data, you will probably have to destroy
the medium itself. If the magnetic layer is bonded to plastic (floppy disk, tape),
you can consider shredding and then burning the media. For a hard disk, you
can use a belt sander to remove the magnetic layer from the platters, or use
a blowtorch to melt the disk platters down to liquid metal. In practice, you
are unlikely to convince users to take such extreme measures, so repeated
overwriting is the best practical solution.

21.10.3 Solid-State Storage
Wiping nonvolatile memory, such as EPROM, EEPROM, and flash, poses
similar problems. Overwriting old data does not remove all traces, and
the data retention mechanisms we discussed in Section 8.3.4 are also at work.
Again, repeatedly overwriting the secret with random data is the only practical
solution, but it is by no means perfect. As soon as the solid-state device is no
longer needed, it should be destroyed.

21.11 Exercises

Exercise 21.1 Investigate how login passwords are stored on your machine.
Write a program that, given a stored (encrypted or hashed) password, exhaus-
tively searches for the real password. How long would it take your program
to exhaustively search through the top one million passwords?

Exercise 21.2 Investigate how private keys are stored with GNU Privacy
Guard (GPG). Write a program that, given a stored encrypted GPG private
key, exhaustively searches for the password and recovers the private key. How
long would it take your program to exhaustively search through the top one
million passwords?

314 Part IV ■ Key Management

Exercise 21.3 Consider a 24-bit salt. Given a group of 64 users, would you
expect two users to have the same salt? 1024 users? 4096 users? 16,777,216
users?

Exercise 21.4 Find a new product or system that maintains long-term secrets.
This might be the same product or system you analyzed for Exercise 1.8.
Conduct a security review of that product or system as described in
Section 1.12, this time focusing on issues surrounding how the system might
store these secrets.

P a r t

V
Miscellaneous

In This Part

Chapter 22: Standards and Patents

Chapter 23: Involving Experts

C H A P T E R

22

Standards and Patents

Aside from cryptography itself, there are two things you really should know
about: standards and patents. We offer our perspectives on both here.

22.1 Standards

Standards are a double-edged sword. On one hand, no one will fault you
for using a standard. We said this in the context of AES. On the other hand,
many security standards don’t work. This is a conundrum. We focus on
the engineering aspects of cryptography in this book. But if you do any
cryptographic engineering, you are going to encounter standards. So you need
to know a bit about them, and we consider them now.

22.1.1 The Standards Process
For those who have not been involved in the standards development process,
we’ll first describe how many standards are made. It starts out with some
standardization body, such as the Internet Engineering Task Force (IETF),
the Institute of Electrical and Electronics Engineers (IEEE), the International
Organization for Standardization (ISO), or the European Committee for Stan-
dardization (CEN). This standardization body sets up a committee in response
to some perceived need for a new or improved standard. The committee
goes by different names: working group, task group, or whatever. Sometimes
there are hierarchical structures of committees, but the basic idea remains the
same. Committee membership is typically voluntary. People apply to join, and

317

318 Part V ■ Miscellaneous

pretty much anyone is accepted. Often there are some procedural hoops to
jump through, but there is no significant selection of members. These com-
mittees vary in size up to several hundred members, but big committees split
themselves into smaller subcommittees (called task groups, study groups, or
whatever). Most work is done in a committee of up to a few dozen people.

Standardization committees have regular meetings, once every few months.
All members travel to a city and meet in a hotel for a few days. In the months
between meetings, members of the committee will do some work, create
proposals and presentations, etc. At the meetings, the committee decides
which way to proceed. Usually there is a single editor who gets the job of
putting all the proposals together into a single standards document. Creating
a standard is a slow process and often takes many years.

So who turns up to join these committees? Well, being a member is expensive.
Apart from the time it takes, the travel and hotels are not cheap. So everybody
there is sent by their company. Companies have several motivations to be
represented. Sometimes they want to sell products that must interoperate with
products from other companies. This requires standards, and the best way to
keep track of the standardization process is to be there. Companies also want to
keep an eye on their competitors. You don’t want to let your competitor write
the standards, because they will do something to put you at a competitive
disadvantage—perhaps skew it toward their own technology or requirements
or include techniques for which they themselves hold a patent. Sometimes
companies don’t want a standard, so they show up at the committee meetings
to try to slow the process down to allow their proprietary solution time to
capture the market. In real life, all these motivations, plus several more, are
all mixed together in varying proportions to create a very complex political
environment.

Not surprisingly, quite a number of standardization committees fail. They
never produce anything, or produce something atrociously bad, or end up
being deadlocked and overtaken by the market, and then define whatever
system captured the market. Successful committees manage to produce a
standards document after a few years.

Once the standard has been written, everybody goes and implements it. This,
of course, leads to systems that do not interoperate, so there is a secondary
process where interoperability is tested and the different manufacturers adapt
their implementations to work together.

There are many problems with this process. The political structure of the
committee puts very little emphasis on creating a good technical standard.
The most important thing is to reach consensus. The standard is finished when
everybody is equally unhappy with the result. To pacify the different factions,
standards have many options, extended functionalities, useless alternatives,
etc. And as each faction has its own ideas, opinions, and focus points, the best

Chapter 22 ■ Standards and Patents 319

compromise is often contradictory. Many standards are internally inconsistent,
or even contradict themselves.

This whole process is made even more complex by the fact that companies
are creating implementations while the standardization process is still going
on, based on drafts of the standard. This makes it even harder to change
something, because somebody has already implemented it and doesn’t want
to do it again. Of course, different companies will implement things in different
ways and then fight in the committee to get the standard adjusted to fit their
implementation. Sometimes the only compromise is to choose something that
no company has implemented, just to ensure that they are all equally unhappy.
Technical merit does not really feature in this type of discussion.

22.1.1.1 The Standard

One of the results is that most standards are extremely difficult to read. The
standards document is a design by committee, and there is little pressure
within the process to make the document clear, concise, accurate, or readable.
In fact, a highly unreadable document is easier to work with, because only a
few of the committee members will understand it, and they can work on it
without being bothered by the other members. Digging through hundreds of
pages of badly written documentation is no fun, so most committee members
end up not reading the full draft and only checking the limited portions of the
standard they are interested in.

22.1.1.2 Functionality

As we already mentioned, interoperability testing is always required. And
of course, different companies implement different things. Quite often, what
ends up being implemented is subtly different from what the standard defines,
and as each company is already marketing its products, it is sometimes too
late to change things. We’ve seen products of brand A that recognize the
implementations of brand B by their deviations from the standard, and then
adjust their own behavior to make things work.

Standards often include a very large number of options, but the actual imple-
mentations will only use a particular set of options, with a few restrictions
and extensions, of course, because the standards document itself describes
something that doesn’t work. And the difference between the actual imple-
mentations and the standard are, of course, not documented.

Overall, the entire process works—kind of—but only for central func-
tionality. A wireless network will allow you to connect, but management
functionality is unlikely to work across products from different vendors. Sim-
ple HTML pages will display correctly on all browsers, but more advanced

320 Part V ■ Miscellaneous

layout features give different results on different browsers. We’ve all become
so used to this that we hardly notice it.

This situation is unfortunate. As an industry, we seem unable to create
standards that are even readable or correct, let alone provide interoperability
of different products for all but the most basic functionality.

22.1.1.3 Security
These failings mean that the typical method of producing standards simply
doesn’t work for security purposes. In security, we have an active attacker who
will seek out the most remote corner of the standard. Security also depends on
the weakest link: any single mistake can be fatal.

We’ve already hammered on the importance of simplicity. Standards are
anything but simple. The committee process precludes simplicity and invari-
ably produces something that is more complex than anyone in the committee
can fully understand. For that reason alone, the result can never be secure.

When we’ve spoken to some standardization people about this problem,
we often get responses along the lines of: ‘‘Well, the techies always want to
make a perfect standard.’’ . . . ‘‘Political realities are that we have to make a
compromise.’’ . . . ‘‘That is just how the system works.’’ . . . ‘‘Look at what
we have achieved.’’ . . . ‘‘Things are working pretty well.’’ In security, that
is not good enough. The very fact that interoperability testing is required
after the standard has been set demonstrates that committee standards don’t
work in security. If the functional part of the standard (i.e., the easy part)
isn’t good enough to result in interoperable systems without testing, then
the security part cannot possibly achieve security without testing. And as we
know, it isn’t possible to test for security. Sure, it might be possible to create
an implementation that includes a subset of the functionality of the standard
that is also secure, but that is not sufficient for a security standard. A security
standard claims that if you adhere to it, you will achieve a certain level of
security. Security is simply too difficult to leave to a committee. So whenever
someone suggests using a committee-written cryptography standard, we are
always extremely reluctant to do so.

There are a few useful standards in this field, none of which was written
by a committee. Sometimes you get just a small group of people who create
a single coherent design. And sometimes the result is adopted as a standard
without a lot of political compromises. These standards can be quite good.
We’ll discuss the most important two below.

22.1.2 SSL
SSL is the security protocol used by Web browsers to connect securely to Web
servers. The first widely used version was SSL 2, which contained several
security flaws. The improved version is known as SSL 3 [53]. It was designed

Chapter 22 ■ Standards and Patents 321

by three people without any further committee process. SSL 3 has been widely
used and is generally acknowledged as a good protocol.

A warning: SSL is a good protocol, but that does not mean that any system
that uses SSL is secure. SSL relies on a PKI to authenticate the server, and the
PKI client embedded in most browsers is so permissive that the overall security
level is rather low. One of our browsers has approximately 150 different root
certificates from 70 different CAs. So even before we start looking at active
attacks, there are 35 different organizations spread throughout the world that
we have to trust with all of our Web information.

SSL was never really standardized. It was simply implemented by Netscape,
and became a de facto standard. Standardization and further development of
SSL is being done under the name TLS by an IETF working group. The changes
between SSL and TLS seem fairly minor, and we have no reason to believe that
TLS is not as good as SSL 3. But given the IETF’s recent record with designing
security protocols such as IPsec [51], there is a danger of the committee effect
once again asserting itself and unnecessarily complicating a good standard.

22.1.3 AES: Standardization by Competition
To us, AES is the shining example of how to standardize security systems.
AES is not a design by committee, but rather a design by competition. The
new SHA-3 standardization process is proving to be very similar. The process
is rather simple. First you specify what the system is supposed to achieve.
Developing the specifications can be done in a reasonably small group with
inputs from many different sources.

The next step is a call for proposals. You ask experts to develop complete
solutions that satisfy the given requirements. Once the proposals are in, all
that remains is to choose among the proposals. This is a straightforward
competition in which you judge them by a variety of criteria. As long as you
make security the primary criterion, the submitters have a vested interest in
finding security weaknesses in their competitors’ proposals. With a bit of luck,
this will lead to useful feedback. In other situations, you might have to pay to
get security evaluations done by outside experts.

In the end, if things go right, you will be able to select a single proposal,
either unchanged or with minor changes. This is not the time to make
an amalgamation of the different proposals; that will just lead to another
committee design. If none of the proposals satisfies the requirements, and it
seems possible to create something better, you should probably ask for new
proposals.

This is exactly how NIST ran the AES competition, and it worked incredibly
well. The 15 original proposals were evaluated in a first round and reduced to
five finalists. A second round of evaluations on the finalists led to the selection
of the winner. Amazingly enough, any one of the five finalists would have

322 Part V ■ Miscellaneous

been a good standard, and certainly a better standard than any committee
design. Our main concern is that the AES standardization process may have
been just a little too quick, and there might not have been enough time to
thoroughly analyze all the finalists. But still the process was very good.

The competition model of standardization only works if you have enough
experts to create at least a few competing designs. But in our opinion, if you
don’t have enough experts to generate several proposals, you should not be
standardizing any security systems. For reasons of simplicity and consistency,
which are crucial to the overall security, a security system must be designed
by a small group of experts. Then you need other experts to analyze the
proposal and attack it, looking for flaws. To have any hope of getting a good
result—whatever process you use—you need enough experts to form at least
three proposal groups. If you have that many experts, you should use the
competition model, as it is a model that has demonstrated it can produce good
security standards.

22.2 Patents

We had a long discussion about the role of patents in cryptography in the
first edition of this book. The ecosystem surrounding patents has changed
somewhat since then, and we’ve also learned more. In this book, we’re going
to refrain from offering specific advice about patents. But we do want to make
you aware of the fact that patents play a role in cryptography. Patents may
affect which cryptographic protocols you choose to use or not use. We suggest
you contact your lawyer for specific advice regarding patents.

C H A P T E R

23

Involving Experts

There is something strange about cryptography: everybody thinks they know
enough about it to design and build their own system. We never ask a second-
year physics student to design a nuclear power plant. We wouldn’t let a
trainee nurse who claims to have found a revolutionary method for heart
surgery operate on us. Yet people who have read a book or two think they can
design their own cryptographic system. Worse still, they are sometimes able
to convince management, venture capitalists, and even some customers that
their design is the neatest thing since sliced bread.

Among cryptographers, Bruce’s first book, Applied Cryptography [111, 112],
is both famous and notorious. It is famous for bringing cryptography to the
attention of tens of thousands of people. It is notorious for the systems that
these people then designed and implemented on their own.

A recent example is 802.11, the wireless network standard. The initial design
included a secure channel called wired equivalent privacy (WEP) to encrypt
and authenticate wireless communications. The standard was designed by
a committee without any cryptographers. The results were horrible from a
security perspective. The decision to use the RC4 encryption algorithm was
not the best one, but not a fatal flaw in and of itself. However, RC4 is a
stream cipher and needs a unique nonce. WEP didn’t allocate enough bits
for the nonce, with the result that the same nonce value had to be reused,
which in turn resulted in many packets being encrypted with the same key
stream. That defeated the encryption properties of the RC4 stream cipher
and allowed a smart attacker to break the encryption. A more subtle flaw
was not hashing the secret key and nonce together before using it as the

323

324 Part V ■ Miscellaneous

RC4 key, which eventually led to key-recovery attacks [52]. A CRC checksum
was used for authentication, but since CRC computations are linear, it was
trivial (using some linear algebra) to modify any packet without any chance of
detection. A single shared key was used for all users in a network, making key
updates much more difficult to do. The network password was used directly
as the encryption key for all communications, without using any kind of key
negotiation protocol. And finally, encryption was turned off by default, which
meant that most implementations never bothered turning encryption on in the
first place. WEP wasn’t just broken; it was robustly broken.

Designing a replacement for WEP was not easy, because it had to be
retrofitted to existing hardware. But there was no choice; the security of the
original standard was abysmal. The replacement became WPA.

The WEP story is not exceptional. It got more press than most bad cryp-
tographic designs because 802.11 is such a successful product, but we have
seen many similar situations in other systems. As a colleague once told Bruce:
‘‘The world is full of bad security systems designed by people who have read
Applied Cryptography.’’

Cryptography Engineering could have the same effect.
That makes this a very dangerous book. Some people will read this book,

and then turn around and design a cryptographic algorithm or protocol. When
they’re finished, they’ll have something that looks good to them, and maybe
even works, but will it be secure? Maybe they’ll get 70% right. If they’re very
lucky, they may get 90% right. But there is no prize for being almost right in
cryptography. A security system is only as strong as its weakest link; to be
secure, everything must be right. And that is something you simply can’t learn
from reading books.

So why did we write this book if there’s a chance it will lead to bad systems?
We wrote it because people who want to learn how to design cryptographic
systems must learn it somewhere, and we didn’t know of any other suitable
books. Consider this book as an introduction to the field, even though it is
not a manual. We also wrote it for the other engineers involved in a project.
Every part of a security system is of critical importance, and everybody who
works on a project has to have a basic understanding of the security issues
and techniques involved. This includes the programmers, testers, technical
writers, management, and even salespeople. Each person needs to understand
enough about security issues to do his or her work properly. We hope this
book provides an adequate background to the practical side of cryptography.

We also hope we’ve instilled in you a sense of professional paranoia. If
you’ve learned that, then you’ve learned a lot. You can apply professional
paranoia to all aspects of your work. You will be extremely skeptical when
you design your own protocol or look at someone else’s, and that can only
help improve security.

Chapter 23 ■ Involving Experts 325

If we can leave you with one piece of advice, it is to use cryptographic experts
if at all possible. If your project involves cryptography, you will benefit greatly
from the insights of an experienced cryptographic designer. Involve one in
your project at the beginning. The earlier you consult a cryptographic expert,
the cheaper and easier it will be in the long run. Many a time we’ve been called
to projects well underway, only to poke holes in parts that had long since been
designed or implemented. The end result is always expensive, either in terms
of effort, project schedule, and cost, or in terms of the security for the user of
the end product.

Cryptography is fiendishly difficult to do right. Even the systems designed
by experts fail regularly. It doesn’t matter how clever you are, or how
much experience you have in other fields. Designing and implementing
cryptographic systems requires specialized knowledge and experience, and
the only way to get experience is to do it over and over again. And that,
of course, also involves making mistakes. So why get an expert if he makes
mistakes as well? For the same reason you get a qualified surgeon to operate
on you. It is not that they don’t make mistakes; it is that they make a lot fewer
and less serious mistakes. And they work in a conservative manner so that
the small mistakes do not lead to catastrophic results; they know enough to
fail well.

Implementing cryptographic systems is almost as much a specialty as
designing them is. Cryptographic designers are available for hire. Crypto-
graphic implementers are much harder to come by, in part because you
need more of them. A single designer can create work for ten to twenty
implementers. Most people don’t think of cryptographic implementation as a
specialty. Programmers will move from database programming to GUI work
to cryptographic implementations. It’s true that database programming and
GUI work are also specialties, but an experienced programmer can, with a bit
of study, get reasonable results. This does not hold for implementing cryptog-
raphy, where everything must be right, and there’s an attacker trying to make
it wrong.

The best way we know to implement cryptographic systems is to take
competent programmers and train them for this task. This book might be part
of their training, but mostly it requires experience and the right professional
paranoia mindset. And just like any other specialized IT skill, it takes years
before someone is truly good at it. Given the long time it takes to gather this
experience, you must be able to retain these people once they achieve it. That’s
another problem, and one we will gladly leave to others to solve.

Maybe even more important than this book, or any other, is the project
culture. ‘‘Security first’’ should not just be a slogan; it has to be woven into the
very fabric of the project and the project team. Everybody has to live, breathe,
talk, and think security all the time. This is incredibly hard to achieve, but it can

326 Part V ■ Miscellaneous

be done. DigiCash had a team like that in the 1990s. The aviation industry has
a similarly pervasive safety culture. This is something that cannot be achieved
in the short term, but it is certainly something that you can strive toward. This
book is merely a primer on the most important security issues intended for the
more technical people on the team.

As Bruce wrote in Secrets and Lies: ‘‘Security is a process, not a product.’’ In
addition to the security culture, you also need a security process. The aviation
industry has an extensive safety process. Most of the IT industry doesn’t even
have a process for producing software, let alone a process for high-quality
software, much less a process for security software. Writing good security
software is largely beyond the current state of the art in our industry. That
does not mean we should give up, though, and there has been some progress
lately. As information technology becomes more and more critical to our
infrastructure, our freedom, and our safety, we must continue to improve the
security of our systems. We have to do the best we can.

We hope this book can contribute somewhat to the improvement of our
security systems by teaching those who are working on security systems the
basics of practical cryptography.

Bibliography

[1] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A Proposal for the
Advanced Encryption Standard. In National Institute of Standards and
Technology [98]. See http://www.cl.cam.ac.uk/∼rja14/serpent.html.
[Page 56]

[2] Ross J. Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems. John Wiley & Sons, Inc., 2008. [Page 18]

[3] Claude Barral and Assia Tria. Fake Fingers in Fingerprint Recognition:
Glycerin Supersedes Gelatin. In Véronique Cortier, Claude Kirchner,
Mitsuhiro Okada, and Hideki Sakurada, editors, Formal to Practical
Security, volume 5458 of Lecture Notes in Computer Science, pages 57–69.
Springer-Verlag, 2009. [Page 309]

[4] Mihir Bellare. New Proofs for NMAC and HMAC: Security Without
Collision-Resistance. In Cynthia Dwork, editor, Advances in Cryptol-
ogy—CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science,
pages 602–619. Springer-Verlag, 2006. [Page 93]

[5] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions
for Message Authentication. In Koblitz [76], pages 1–15. [Pages 93, 94]

[6] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of Cipher
Block Chaining. In Desmedt [31], pages 341–358. [Pages 46, 92]

[7] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption:
Relations Among Notions and Analysis of the Generic Composition

327

../../../../../www.cl.cam.ac.uk/~rja14/serpent.html

328 Bibliography

Paradigm. In Tatsuaki Okamoto, editor, Advances in Cryptology—ASIA-
CRYPT 2000, volume 1976 of Lecture Notes in Computer Science,
pages 531–545. Springer-Verlag, 2000. [Page 102]

[8] Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Sig-
natures: How to Sign with RSA and Rabin. In Ueli M. Maurer, editor,
Advances in Cryptology—EUROCRYPT 1996, volume 1070 of Lecture
Notes in Computer Science. Springer-Verlag, 1996. [Page 206]

[9] Mihir Bellare and Phillip Rogaway. Optimal Asymmetric Encryption:
How to Encrypt with RSA. In Alfredo De Santis, editor, Advances in
Cryptology—EUROCRYPT 1994, volume 950 of Lecture Notes in Computer
Science, pages 92–111. Springer-Verlag, 2004. [Page 206]

[10] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptog-
raphy, 2005. Available from http://cseweb.ucsd.edu/users/mihir/

cse207/classnotes.html. [Page 18]

[11] Charles H. Bennett and Gilles Brassard. An update on quantum cryptog-
raphy. In G.R. Blakley and David Chaum, editors, Advances in Cryptology,
Proceedings of CRYPTO 84, volume 196 of Lecture Notes in Computer
Science, pages 475–480. Springer-Verlag, 1984. [Page 139]

[12] Daniel J. Bernstein. Cache-Timing Attacks on AES, 2005. Available from
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf. [Page 251]

[13] Eli Biham. New Types of Cryptanalytic Attacks Using Related Keys. In
Helleseth [61], pages 398–409. [Page 45]

[14] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich,
and Adi Shamir. Key Recovery Attacks of Practical Complexity on AES
Variants With Up To 10 Rounds. Cryptology ePrint Archive, Report
2009/374, 2009. See http://eprint.iacr.org/2009/374. [Page 55]

[15] Alex Biryukov and Dmitry Khovratovich. Related-key Cryptanalysis
of the Full AES-192 and AES-256. Cryptology ePrint Archive, Report
2009/317, 2009. See http://eprint.iacr.org/2009/317. [Page 55]

[16] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher
and Related-Key Attack on the Full AES-256. In Shai Halevi, editor,
Advances in Cryptology—CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 231–249. Springer-Verlag, 2009. [Page 55]

[17] Jurjen Bos. Booting problems with the JEC computer. Personal commu-
nications, 1983. [Page 125]

../../../../../cseweb.ucsd.edu/users/mihir/cse207/classnotes.html
../../../../../cseweb.ucsd.edu/users/mihir/cse207/classnotes.html
../../../../../cr.yp.to/antiforgery/cachetiming-20050414.pdf
../../../../../eprint.iacr.org/2009/374
../../../../../eprint.iacr.org/2009/374

Bibliography 329

[18] Jurjen Bos. Practical Privacy. PhD thesis, Eindhoven University of
Technology, 1992. Available from http://www.macfergus.com/niels

/lib/bosphd.html. [Pages 179, 239, 245]

[19] Gilles Brassard and Claude Crépeau. Quantum Bit Commitment and
Coin Tossing Protocols. In Menezes and Vanstone [89], pages 49–61.
[Page 139]

[20] Karl Brincat and Chris J. Mitchell. New CBC-MAC forgery attacks.
In V. Varadharajan and Y. Mu, editors, Information Security and Pri-
vacy, ACISP 2001, volume 2119 of Lecture Notes in Computer Science,
pages 3–14. Springer-Verlag, 2001. [Pages 91, 92]

[21] David Brumley and Dan Boneh. Remote Timing Attacks are Practical. In
USENIX Security Symposium Proceedings, 2003. [Page 251]

[22] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario
Gennaro, Shai Halevi, Charanjit Jutla, Stephen M. Matyas Jr., Luke
O’Connor, Mohammad Peyravian, David Safford, and Nevenko
Zunic. MARS—a candidate cipher for AES. In National Institute of
Standards and Technology [98]. See http://www.research.ibm.com/

security/mars.pdf. [Pages 58, 250]

[23] Christian Cachin. Entropy Measures and Unconditional Security in
Cryptography. PhD thesis, ETH, Swiss Federal Institute of Technol-
ogy, Zürich, 1997. See ftp://ftp.inf.ethz.ch/pub/publications/

dissertations/th12187.ps.gz. [Page 142]

[24] Lewis Carroll. The Hunting of the Snark: An Agony, in Eight Fits. Macmillan
and Co., London, 1876. [Page 126]

[25] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In
Hugo Krawczyk, editor, Advances in Cryptology—CRYPTO ’98, volume
1462 of Lecture Notes in Computer Science, pages 56–71. Springer-Verlag,
1998. [Page 82]

[26] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkel-Damgård Revisited: How to Construct a Hash Function.
In Shoup [119], pages 430–448. [Pages 86, 87]

[27] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. In National
Institute of Standards and Technology [98]. [Page 55]

[28] I.B. Damgård, editor. Advances in Cryptology—EUROCRYPT ’90, vol-
ume 473 of Lecture Notes in Computer Science. Springer-Verlag, 1990.
[Pages 330, 335]

../../../../../www.macfergus.com/niels/lib/bosphd.html
../../../../../www.macfergus.com/niels/lib/bosphd.html
../../../../../www.research.ibm.com/security/mars.pdf
../../../../../www.research.ibm.com/security/mars.pdf
ftp://ftp.inf.ethz.ch/pub/publications/dissertations/th12187.ps.gz
ftp://ftp.inf.ethz.ch/pub/publications/dissertations/th12187.ps.gz

330 Bibliography

[29] Don Davis, Ross Ihaka, and Philip Fenstermacher. Cryptographic
Randomness from Air Turbulence in Disk Drives. In Desmedt [31],
pages 114–120. [Page 138]

[30] Bert den Boer and Antoon Bosselaers. Collisions for the compression
function of MD5. In Helleseth [61], pages 293–304. [Page 81]

[31] Yvo G. Desmedt, editor. Advances in Cryptology—CRYPTO ’94, vol-
ume 839 of Lecture Notes in Computer Science. Springer-Verlag, 1994.
[Pages 327, 330]

[32] Giovanni Di Crescenzo, Niels Ferguson, Russel Impagliazzo, and
Markus Jakobsson. How to Forget a Secret. In Christoph Meinel and
Sophie Tison, editors, STACS 99, volume 1563 of Lecture Notes in Com-
puter Science, pages 500–509. Springer-Verlag, 1999. [Page 127]

[33] Whitfield Diffie and Martin E. Hellman. New Directions in Cryp-
tography. IEEE Transactions on Information Theory, IT-22(6):644–654,
November 1976. [Page 181]

[34] Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. Authen-
tication and Authenticated Key Exchanges. Designs, Codes and Cryptog-
raphy, 2(2):107–125, 1992. [Page 228]

[35] Edsger W. Dijkstra. The Humble Programmer. Communications of the
ACM, 15(10):859–866, 1972. Also published as EWD340, http://www.cs
.utexas.edu/users/EWD/ewd03xx/EWD340.PDF. [Page 118]

[36] Hans Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253–271,
1998. [Page 81]

[37] Mark Dowd, John McDonald, and Justin Schuh. The Art of Software
Security Assessment: Identifying and Preventing Software Vulnerabilities.
Addison-Wesley, 2006. [Page 133]

[38] Orr Dunkelman, Sebastiaan Indesteege, and Nathan Keller. A
Differential-Linear Attack on 12-Round Serpent. In Dipanwita Roy
Chowdhury, Vincent Rijmen, and Abhijit Das, editors, Progress in Cryp-
tology—INDOCRYPT 2008, volume 5365 of Lecture Notes in Computer
Science, pages 308–321. Springer-Verlag, 2008. [Page 56]

[39] Stephen R. Dussé and Burton S. Kaliski Jr. A Cryptographic Library for
the Motorola DSP56000. In Damgård [28], pages 230–244. [Page 249]

[40] Morris Dworkin. Recommendation for Block Cipher Modes of Opera-
tion—Methods and Techniques. National Institute of Standards and
Technology, December 2001. Available from http://csrc.nist.gov/

publications/nistpubs/800-38a/sp800-38a.pdf. [Page 70]

../../../../../www.cs.utexas.edu/users/EWD/ewd03xx/EWD340.PDF
../../../../../www.cs.utexas.edu/users/EWD/ewd03xx/EWD340.PDF
../../../../../csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
../../../../../csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

Bibliography 331

[41] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
The CCM Mode for Authentication and Confidentiality. National Institute
of Standards and Technology, May 2004. Available from http://csrc

.nist.gov/publications/nistpubs/800-38C/SP800-38C.pdf.
[Pages 71, 112]

[42] Morris Dworkin. Recommendation for Block Cipher Modes of Opera-
tion: The CMAC Mode for Authentication. National Institute of Stan-
dards and Technology, May 2005. Available from http://csrc.nist

.gov/publications/nistpubs/800-38B/SP_800-38B.pdf. [Page 93]

[43] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. National Institute of Standards
and Technology, November 2007. Available from http://csrc.nist

.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.
[Pages 71, 94, 113]

[44] Electronic Frontier Foundation. Cracking DES: Secrets of Encryption
Research, Wiretap Politics & Chip Design. O’Reilly, 1998. [Page 53]

[45] Carl Ellison. Improvements on Conventional PKI Wisdom. In
Sean Smith, editor, 1st Annual PKI Research Workshop—Proceedings,
pages 165–175, 2002. Available from http://www.cs.dartmouth.edu/

∼pki02/Ellison/. [Pages 285, 286]

[46] Jan-Hendrik Evertse and Eugène van Heyst. Which New RSA-Signatures
Can Be Computed from Certain Given RSA-Signatures? J. Cryptology,
5(1):41–52, 1992. [Page 201]

[47] H. Feistel, W.A. Notz, and J.L. Smith. Some Cryptographic Techniques
for Machine-to-Machine Data Communications. Proceedings of the IEEE,
63(11):1545–1554, 1975. [Page 52]

[48] Niels Ferguson. Authentication weaknesses in GCM. Public Comments
to NIST, 2005. See http://csrc.nist.gov/groups/ST/toolkit/BCM

/documents/comments/CWC-GCM/Ferguson2.pdf. [Page 95]

[49] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Mike
Stay, David Wagner, and Doug Whiting. Improved Cryptanalysis of
Rijndael. In Bruce Schneier, editor, Fast Software Encryption, 7th Interna-
tional Workshop, FSE 2000, volume 1978 of Lecture Notes in Computer
Science, pages 213–230. Springer-Verlag, 2000. See also http://www

.schneier.com/paper-rijndael.html. [Page 55]

[50] Niels Ferguson, John Kelsey, Bruce Schneier, and Doug Whiting. A
Twofish Retreat: Related-Key Attacks Against Reduced-Round Twofish.

../../../../../csrc.nist.gov/publications/nistpubs/800-38c/sp800-38c.pdf
../../../../../csrc.nist.gov/publications/nistpubs/800-38c/sp800-38c.pdf
../../../../../csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
../../../../../csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
../../../../../csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
../../../../../csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
../../../../../www.cs.dartmouth.edu/~pki02/Ellison/default.htm
../../../../../www.cs.dartmouth.edu/~pki02/Ellison/default.htm
../../../../../csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
../../../../../csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
../../../../../www.schneier.com/paper-rijndael.html
../../../../../www.schneier.com/paper-rijndael.html

332 Bibliography

Twofish Technical Report 6, Counterpane Systems, February 2000. See
http://www.schneier.com/paper-twofish-related.html. [Page 45]

[51] Niels Ferguson and Bruce Schneier. A Cryptographic Evaluation of
IPsec, 1999. See http://www.schneier.com/paper-ipsec.html.
[Pages 104, 321]

[52] Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the Key
Schedule Algorithm of RC4. In Serge Vaudenay and Amr M. Youssef,
editors, Selected Areas in Cryptography, 8th Annual International Workshop,
SAC 2001, volume 2259 of Lecture Notes in Computer Science. Springer-
Verlag, 2001. [Page 324]

[53] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL Protocol,
Version 3.0. Internet draft, Transport Layer Security Working Group,
November 18, 1996. Available from http://www.potaroo.net/ietf/

idref/draft-freier-ssl-version3/. [Page 320]

[54] Ian Goldberg and David Wagner. Randomness and the Netscape
Browser. Dr. Dobb’s Journal, pages 66–70, January 1996. Available
from http://www.cs.berkeley.edu/∼daw/papers/ddj-netscape.html.
[Page 137]

[55] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cam-
bridge University Press, 2001. Also available from http://www.wisdom

.weizmann.ac.il/∼oded/foc-book.html. [Page 18]

[56] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, 2001. Also available from http://www

.wisdom.weizmann.ac.il/∼oded/foc-book.html. [Page 18]

[57] Peter Gutmann. Secure Deletion of Data from Magnetic and
Solid-State Memory. In USENIX Security Symposium Proceedings,
1996. Available from http://www.cs.auckland.ac.nz/∼pgut001/pubs/
secure_del.html. [Pages 125, 312]

[58] Peter Gutmann. X.509 Style Guide, October 2000. Available from
http://www.cs.auckland.ac.nz/∼pgut001/pubs/x509guide.txt.
[Page 279]

[59] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clark-
son, William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob
Appelbaum, and Edward W. Felten. Lest We Remember: Cold Boot
Attacks on Encryption Keys. In USENIX Security Symposium Proceedings,
pages 45–60, 2008. [Pages 125, 126]

../../../../../www.schneier.com/paper-twofish-related.html
../../../../../www.schneier.com/paper-ipsec.html
../../../../../www.potaroo.net/ietf/idref/draft-freier-ssl-version3/default.htm
../../../../../www.potaroo.net/ietf/idref/draft-freier-ssl-version3/default.htm
../../../../../www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
../../../../../www.wisdom.weizmann.ac.il/~oded/foc-book.html
../../../../../www.wisdom.weizmann.ac.il/~oded/foc-book.html
../../../../../www.wisdom.weizmann.ac.il/~oded/foc-book.html
../../../../../www.wisdom.weizmann.ac.il/~oded/foc-book.html
../../../../../www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
../../../../../www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
../../../../../www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt

Bibliography 333

[60] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC 2409,
November 1998. [Pages 191, 192]

[61] Tor Helleseth, editor. Advances in Cryptology—EUROCRYPT ’93, vol-
ume 765 of Lecture Notes in Computer Science. Springer-Verlag, 1993.
[Pages 328, 330]

[62] Michael Howard and Steve Lipner. The Security Development Lifecycle.
Microsoft Press, 2006. [Page 133]

[63] Intel. Intel 82802 Firmware Hub: Random Number Generator, Programmer’s
Reference Manual, December 1999. Available from the Intel web site.
[Page 139]

[64] International Telecommunication Union. X.680-X.683: Abstract Syntax
Notation One (ASN.1), X.690-X.693: ASN.1 encoding rules, 2002. [Page 220]

[65] Jakob Jonsson. On the Security of CTR + CBC-MAC. In Selected
Areas in Cryptography, 9th Annual International Workshop, SAC 2002,
2002. See http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/

proposedmodes/ccm/ccm-ad1.pdf. [Page 112]

[66] Robert R. Jueneman. Analysis of Certain Aspects of Output Feedback
Mode. In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors,
Advances in Cryptology, Proceedings of Crypto 82, pages 99–128. Plenum
Press, 1982. [Page 69]

[67] David Kahn. The Codebreakers, The Story of Secret Writing. Macmillan
Publishing Co., New York, 1967. [Page 18]

[68] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography:
Principles and Protocols. Chapman & Hall/CRC, 2007. [Page 18]

[69] John Kelsey, Bruce Schneier, and Niels Ferguson. Yarrow-160: Notes
on the Design and Analysis of the Yarrow Cryptographic Pseudoran-
dom Number Generator. In Howard Heys and Carlisle Adams, editors,
Selected Areas in Cryptography, 6th Annual International Workshop, SAC ’99,
volume 1758 of Lecture Notes in Computer Science. Springer-Verlag, 1999.
[Page 141]

[70] John Kelsey, Bruce Schneier, and David Wagner. Key-Schedule Crypt-
analysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In Koblitz [76],
pages 237–251. [Page 45]

[71] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Crypt-
analytic Attacks on Pseudorandom Number Generators. In Serge
Vaudenay, editor, Fast Software Encryption, 5th International Workshop,

../../../../../csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm-ad1.pdf
../../../../../csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm-ad1.pdf

334 Bibliography

FSE’98, volume 1372 of Lecture Notes in Computer Science, pages 168–188.
Springer-Verlag, 1998. [Page 141]

[72] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side
Channel Cryptanalysis of Product Ciphers. Journal of Computer
Security, 8(2–3):141–158, 2000. See also http://www.schneier.com/

paper-side-channel.html. [Page 132]

[73] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol.
RFC 2401, November 1998. [Page 111]

[74] Lars R. Knudsen and Vincent Rijmen. Two Rights Sometimes Make a
Wrong. In Workshop on Selected Areas in Cryptography (SAC ’97), pages
213–223, 1997. [Page 44]

[75] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Com-
puter Programming. Addison-Wesley, 1981. [Pages 140, 170, 173, 243]

[76] Neal Koblitz, editor. Advances in Cryptology—CRYPTO ’96, volume
1109 of Lecture Notes in Computer Science. Springer-Verlag, 1996.
[Pages 327, 333, 334]

[77] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Michael Wiener, editor, Advances in Cryptology—CRYPTO ’99, volume
1666 of Lecture Notes in Computer Science, pages 388–397. Springer-Verlag,
1999. [Page 132]

[78] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Koblitz [76], pages 104–113.
[Pages 251, 252]

[79] J. Kohl and C. Neuman. The Kerberos Network Authentication Service
(V5). RFC 1510, September 1993. [Page 270]

[80] Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A High-
Performance Conventional Authenticated Encryption Mode. In Bimal
Roy and Willi Meier, editors, Fast Software Encryption, 11th International
Workshop, FSE 2004, volume 3017 of Lecture Notes in Computer Science,
pages 408–426. Springer-Verlag, 2004. [Page 112]

[81] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for
Message Authentication. RFC 2104, February 1997. [Page 93]

[82] Hugo Krawczyk. The Order of Encryption and Authentication for Pro-
tecting Communications (or: How Secure is SSL?). In Joe Kilian, editor,
Advances in Cryptology—CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 310–331. Springer-Verlag, 2001. [Page 102]

../../../../../www.schneier.com/paper-side-channel.html
../../../../../www.schneier.com/paper-side-channel.html

Bibliography 335

[83] Xuejia Lai, James L. Massey, and Sean Murphy. Markov Ciphers and
Differential Cryptanalysis. In D.W. Davies, editor, Advances in Cryptol-
ogy—EUROCRYPT ’91, volume 547 of Lecture Notes in Computer Science,
pages 17–38. Springer-Verlag, 1991. [Page 250]

[84] Xuejia Lai and James L. Massey. A Proposal for a New Block Encryption
Standard. In Damgård [28], pages 389–404. [Page 250]

[85] Arjen K. Lenstra and Eric R. Verheul. Selecting Cryptographic Key Sizes.
J. Cryptology, 14(4):255–293, August 2001. [Pages 36, 189]

[86] Michael Luby and Charles Rackoff. How to Construct Pseudoran-
dom Permutations from Pseudorandom Functions. SIAM J. Computation,
17(2), April 1988. [Page 46]

[87] T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino. Impact of
Artificial ‘‘Gummy’’ Fingers on Fingerprint Systems. In Proceedings of
SPIE, Vol #4677, Optical Security and Counterfeit Deterrence Techniques IV,
2002. See also http://cryptome.org/gummy.htm. [Page 308]

[88] Gary McGraw. Software Security: Building Security In. Addison-Wesley,
2006. [Page 133]

[89] A.J. Menezes and S.A. Vanstone, editors. Advances in Cryptol-
ogy—CRYPTO ’90, volume 537 of Lecture Notes in Computer Science.
Springer-Verlag, 1990. [Pages 329, 336]

[90] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1996. Also available from
http://www.cacr.math.uwaterloo.ca/hac/. [Pages 18, 243]

[91] D. Mills. Simple Network Time Protocol (SNTP) Version 4. RFC 2030,
October 1996. [Page 264]

[92] David L. Mills. Network Time Protocol (Version 3). RFC 1305, March
1992. [Page 264]

[93] P. Montgomery. Modular Multiplication without Trial Division. Mathe-
matics of Computation, 44(170):519–521, 1985. [Page 249]

[94] Moni Naor and Omer Reingold. On the Construction of Pseudorandom
Permutations: Luby-Rackoff Revisited. J. Cryptology, 12(1):29–66, 1999.
[Page 46]

[95] National Institute of Standards and Technology. DES Modes of Oper-
ation, December 2, 1980. FIPS PUB 81, available from http://www.itl

.nist.gov/fipspubs/fip81.htm. [Page 70]

../../../../../www.cacr.math.uwaterloo.ca/hac/default.htm
../../../../../cryptome.org/gummy.htm
../../../../../www.itl.nist.gov/fipspubs/fip81.htm
../../../../../www.itl.nist.gov/fipspubs/fip81.htm

336 Bibliography

[96] National Institute of Standards and Technology. Data Encryption
Standard (DES), December 30, 1993. FIPS PUB 46-2, available from
http://www.itl.nist.gov/fipspubs/fip46-2.htm. [Pages 51, 52]

[97] National Institute of Standards and Technology. Secure Hash Standard,
April 17, 1995. FIPS PUB 180-1, available from http://www.digistamp

.com/reference/fip180-1.pdf. [Page 82]

[98] National Institute of Standards and Technology. AES Round 1 Technical
Evaluation, CD-1: Documentation, August 1998. [Pages 54, 327, 329, 337]

[99] National Institute of Standards and Technology. Data Encryption Stan-
dard (DES), 1999. FIPS PUB 46-3, available from http://csrc.nist

.gov/publications/fips/fips46-3/fips46-3.pdf. [Page 51]

[100] National Institute of Standards and Technology. Proc. 3rd AES candidate
conference, April 2000. [Page 54]

[101] National Institute of Standards and Technology. Secure Hash Stan-
dard (draft), 2008. FIPS PUB 180-3, available from http://csrc.nist

.gov/publications/fips/fips180-3/fips180-3_final.pdf. [Page 82]

[102] Roger M. Needham and Michael D. Schroeder. Using Encryption for
Authentication in Large Networks of Computers. Communications of the
ACM, 21(12):993–999, December 1978. [Page 270]

[103] Bart Preneel and Paul C. van Oorschot. On the Security of Two MAC
Algorithms. In Ueli Maurer, editor, Advances in Cryptology—EURO-
CRYPT ’96, volume 1070 of Lecture Notes in Computer Science,
pages 19–32. Springer-Verlag, 1996. [Page 93]

[104] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, April 1992.
[Page 81]

[105] Ronald Rivest, Adi Shamir, and Leonard Adleman. A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems. Communications
of the ACM, 21:120–126, February 1978. [Page 195]

[106] Ronald L. Rivest. The MD4 Message Digest Algorithm. In Menezes and
Vanstone [89], pages 303–311. [Page 81]

[107] Ronald L. Rivest. The RC5 Encryption Algorithm. In B. Preneel, editor,
Fast Software Encryption, Second International Workshop, FSE’94, volume
1008 of Lecture Notes in Computer Science, pages 86–96. Springer-Verlag,
1995. [Page 251]

../../../../../www.itl.nist.gov/fipspubs/fip46-2.htm
../../../../../www.digistamp.com/reference/fip180-1.pdf
../../../../../www.digistamp.com/reference/fip180-1.pdf
../../../../../csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
../../../../../csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
../../../../../csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
../../../../../csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

Bibliography 337

[108] Ronald L. Rivest, M.J.B. Robshaw, R. Sidney, and Y.L. Yin. The RC6
Block Cipher. In National Institute of Standards and Technology [98].
See http://people.csail.mit.edu/rivest/Rc6.pdf. [Pages 58, 251]

[109] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A
Block-Cipher Mode of Operation for Efficient Authenticated Encryption.
In Eighth ACM Conference on Computer and Communications Security
(CCS-8), pages 196–205. ACM, ACM Press, 2001. [Page 112]

[110] RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard, January
2001. Available from http://www.rsa.com/rsalabs/node.asp?id=2124.
[Page 206]

[111] Bruce Schneier. Applied Cryptography, Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, Inc., 1994. [Page 323]

[112] Bruce Schneier. Applied Cryptography, Second Edition, Protocols, Algo-
rithms, and Source Code in C. John Wiley & Sons, Inc., 1996.
[Pages 18, 323]

[113] Bruce Schneier. Attack Trees. Dr. Dobb’s Journal, 1999. Also available from
http://www.schneier.com/paper-attacktrees-ddj-ft.html. [Page 5]

[114] Bruce Schneier. Secrets and Lies: Digital Security in a Networked World.
John Wiley & Sons, Inc., 2000. [Pages 16, 18]

[115] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall,
and Niels Ferguson. The Twofish Encryption Algorithm, A 128-Bit Block
Cipher. John Wiley & Sons, Inc., 1999. [Pages 45, 57]

[116] Dr. Seuss. Horton Hatches the Egg. Random House, 1940. [Page 97]

[117] Adi Shamir. How to Share a Secret. Communications of the ACM,
22(11):612–613, 1979. [Page 310]

[118] C.E. Shannon. A Mathematical Theory of Communication. The Bell Sys-
tems Technical Journal, 27:370–423 and 623–656, July and October 1948.
See http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.
[Page 137]

[119] Victor Shoup, editor. Advances in Cryptology—CRYPTO 2005, vol-
ume 3621 of Lecture Notes in Computer Science. Springer-Verlag, 2005.
[Pages 329, 338]

[120] Simon Singh. The Code Book: The Science of Secrecy from Ancient Egypt to
Quantum Cryptography. Anchor, 2000. [Page 18]

../../../../../people.csail.mit.edu/rivest/Rc6.pdf
../../../../../www.rsa.com/rsalabs/node.asp@id=2124
../../../../../www.schneier.com/paper-attacktrees-ddj-ft.html
../../../../../cm.bell-labs.com/cm/ms/what/shannonday/paper.html

338 Bibliography

[121] David Wagner, Niels Ferguson, and Bruce Schneier. Cryptanalysis of
FROG. In Proc. 2nd AES candidate conference, pages 175–181. National
Institute of Standards and Technology, March 1999. [Page 44]

[122] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol.
In Proceedings of the Second USENIX Workshop on Electronic Com-
merce, pages 29–40, November 1996. Revised version available from
http://www.schneier.com/paper-ssl.html. [Page 97]

[123] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in
the Full SHA-1. In Shoup [119], pages 17–36. [Page 82]

[124] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash
Functions. In Ronald Cramer, editor, Advances in Cryptology—EURO-
CRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
19–35. Springer-Verlag, 2005. [Page 81]

[125] Mark N. Wegman and J. Lawrence Carter. New Hash Functions and
Their Use in Authentication and Set Equality. J. Computer and System
Sciences, 22(3):265–279, 1981. [Pages 94, 112]

[126] Doug Whiting, Russ Housley, and Niels Ferguson. Counter with
CBC-MAC (CCM), June 2002. See http://csrc.nist.gov/groups/ST/

toolkit/BCM/documents/proposedmodes/ccm/ccm.pdf. [Page 112]

[127] Michael J. Wiener. Cryptanalysis of short RSA secret exponents. IEEE
Transactions on Information Theory, 36(3):553–558, May 1990. [Page 202]

[128] Robert S. Winternitz. Producing a One-way Hash Function from DES.
In David Chaum, editor, Advances in Cryptology, Proceedings of Crypto 83,
pages 203–207. Plenum Press, 1983. [Page 45]

[129] Thomas Wu. The Secure Remote Password Protocol. In Proceedings of
the 1998 Network and Distributed System Security (NDSS’98) Symposium,
March 1998. [Page 241]

[130] Phil Zimmermann and Jon Callas. The Evolution of PGP’s Web of Trust.
In Andy Oram and John Viega, editors, Beautiful Security, pages 107–130.
O’Reilly, 2009. [Page 289]

../../../../../www.schneier.com/paper-ssl.html
../../../../../csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm.pdf
../../../../../csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm.pdf

Index

A
access control list (ACL), 285–286
accumulator

events, 151
pools, 151
randomness, 147–155

ACL. See access control list
addition

bitwise, 51
modular, 246
modulo, 168–169
without carry, 51

AddRandomEvent, 154–155
add-with-carry, CPU, 243
Adelman, Leonard, 195
administrators, 127
Advanced Encryption Standard (AES),

54–56, 78, 321–322
initialization, 132
128-bit, 54
randomness generator, 143
rounds, 54–55
RSA, 205
S-box, 54
testing, 244

adversarial setting, 7–8
failure rate, 244

AES. See Advanced Encryption
Standard

algorithms, 24–25
binary, 179
distinguishers, 47–48
efficiency, 37
extended Euclidian algorithm,

171–172
Kerckhoff’s principle, 44
primes, 164
public keys, 28
secure channel, 107–112
wooping, 246

Anderson, Ross, 18
Applied Cryptography (Schneier), 18,

323
The Art of Computer Programming

(Knuth), 140
ASN.1, 220
assertions, 130–131
asymmetric key, encryption, 28
ATM, PIN code, 288
atomicity, file system updates, 158
attack tree, 5–6
attacks, 31–33. See also specific attack

types
block ciphers, 44–45
entropy, 142
hash functions, 79
MAC, 90
plaintext, 69

339

340 Index ■ A–C

attacks, (continued)
quantum physics, 139
RF, 252
RSA, 205
steps, 36

authentication, 25–27. See also
message authentication code

clock, 264
conventions, 230–231
encryption, 63, 71, 102–104
GMAC, 94
key negotiation, 227–228
MAC, 96, 102–104, 106
message order, 26
messages, 229
protocols, 97
public key, 189
secret keys, 26
secure channel, 102–104, 106
session keys, 229
symmetric keys, 239

authorization, PKI, 285–286

B
backups, VMs, 157–158
banks

CA, 276
credit card organization, 277

Biham, Eli, 44
binary algorithm, 179
biometrics, 308–309
birthday attacks, 33–34

hash functions, 84
HMAC, 93
meet-in-the-middle attacks, 35

bitslice implementation, 56
bitwise addition, 51
blind signatures, 252
block cipher mode, 44, 63–76

ciphertext c, 64
padding, 64–65

block ciphers, 43–62
attacks, 44–45
chosen-plaintext attack, 44

ciphertext c, 43, 49–50
ciphertext-only attack, 44
generic attacks, 47
GMAC, 94
hash functions, 45
ideal, 46–50
interface, 45
Kerckhoff’s principle, 44
128-bit, 43
permutations, 44, 46
plaintext, 43, 49–50
rounds, 50–51
secret keys, 43
testing, 244
256-bit, 43

Boojum, 126
Bos, Jurjen, 245
bridges, 7, 14–15
buffer overflow, 131

C
C++, 121–122
CA. See certificate authority
cache

CPU, 124, 152, 251
secrets, 124

Carmichael numbers, 177
CBC. See cipher block chaining
CCM, 71, 112–113
CEN. See European Committee for

Standardization
certificate(s), 30

credential systems, 286–288
multilevel, 277–278
PKI, 275, 277–278, 295–297
self-certifying, 296
SSL, 218

certificate authority (CA), 30
banks, 276
fast expiration, 290–291
liability, 30
PKI, 275–276, 283–285
RA, 279–280

Index ■ C 341

root key, 293, 296–297
trust, 30

certificate chain, 277
certificate revocation list (CRL),

289–290
key servers, 292–293

Chaum, David, 245
checks. See testing
Chinese Remainder Theorem (CRT),

196–199
complexity, 198
exponentiations, 198
multiplication, 198
signatures, 239

chosen-ciphertext attack, 32
chosen-key attack, 45
chosen-plaintext attack, 32

block ciphers, 44
distinguishers, 48

cipher block chaining (CBC), 65–68
information leakage, 72, 74
MAC, 91–93

ciphertext c, 24
block cipher mode, 64
block ciphers, 43, 49–50
plaintext, 64

ciphertext-only attack, 31
block ciphers, 44
distinguishers, 48

clock, 259–268
authentication, 264
counters, 264
expiration time, 260
monotonicity, 260
PKI, 264
real-time clock chip, 261
real-time transactions, 260–261
security, 262–263
setting back, 262
setting forward, 263
stopping, 262–263
time, 266–267
time synchronization, 264
unique value, 260

CMAC, 93
code quality, 128
The Codebreakers (Kahn), 18
collision(s), 34

chances of, 73–74
hash functions, 84

collision attacks, 33–35
DH, 190
stream cipher, 69

collision resistance, 78
complexity, 17

CRT, 198
protocols, 238–241
security, 129
test-and-fix, 37–38

composites, 164
constant-time operations, 252
conventions, authentication, 230–231
correct programs, 116–119

test-and-fix, 118
counter IV, 66
counter mode (CTR), 70–71

encryption, 106
GMAC, 94
information leakage, 73, 74

counters
clock, 264
same-state problem, 266

CPU, 15–16
add-with-carry, 243
cache, 124, 152, 251
hash functions, 152
multiplication, 251
registers, 127
secrets, 122

credential systems
delegation, 287–288
PKI, 286–288

credit card(s)
digital signature, 11
PIN code, 11
SET, 10–11
viruses, 11

credit card organization, banks, 277

342 Index ■ C–E

CRL. See certificate revocation list
CRT. See Chinese Remainder Theorem
Crypto-Gram, 18
CTR. See counter mode
current events, 19–20
CWC, 112–113

D
Data Encryption Standard (DES),

51–54
exhaustive search attack, 53
56-bits, 51
rounds, 51–52
64-bit, 52

data integrity, 127–128
data-dependent rotation, 251
DataEncryption Standard (DES), 55
Davies-Meyer hash function, 45
debuggers, 127, 128
decryption, 24, 63

RSA, 207–208, 251
decryptRandomKeyWithRSA,

207–208
defense in depth, 7
delegation, credential systems,

287–288
denial-of-service attack (DOS), 103
DES. See Data Encryption Standard
detection, security, 16
DH. See Diffie-Hellman key exchange

protocol
dictionary attack

offline, 241
passwords, 228

Diffie, Whitfield, 181
Diffie-Hellman key exchange protocol

(DH), 181–193
collision attacks, 190
groups, 182–183
information leakage, 248
man-in-the-middle attack, 184–185
pitfalls, 185–186
public keys, 239
safe primes, 186–187

Station-to-Station protocol, 228
subgroups, 187–188, 191
testing, 248

digest, 77
digital rights management (DRM), 14
digital signature

credit cards, 11
public key, 30
public keys, 29
RSA, 200
SET, 11

Dijkstra, Edsger, 118
direct authorization, 286
discrete logarithm (DL), 183
distinguishers

algorithms, 47–48
chosen-plaintext attack, 48
ciphertext-only attack, 48
known-plaintext attack, 48

distinguishing attack, 32–33
divisibility, primes, 163–166
DL. See discrete logarithm
Document Template Definition (DTD),

221
DOS. See denial-of-service attack
DRAM. See Dynamic RAM
DRM. See digital rights management
DTD. See Document Template

Definition
Dynamic RAM (DRAM), 125

E
EC. See error-correcting code memory
ECB. See electronic cookbook
EEPROM, 313
efficiency, 15

algorithms, 37
public keys, 28
safe primes, 187

Einstein-Podolsky-Rosen paradox, 139
Electrical and Electronics Engineers

(IEEE), 317
electronic banking, 276

Index ■ E–F 343

electronic cookbook (ECB), 65
information leakage, 72

electronic payment systems,
260–261

encryption, 23–39
asymmetric key, 28
authentication, 63, 71, 102–104
CTR, 106
MAC, 102–104
public keys, 27–29, 189
RSA, 206–209, 248
secret keys, 24
secure channel, 102–104, 106–107
storage, 24
symmetric keys, 28

encryptRandomKeyWithRSA, 207
entropy, 137–138

attacks, 142
keystrokes, 147–148
mouse movements, 147–148
passwords, 302
pools, 149
sources of, 147–148

EPROM, 313
Eratosthenes, 164
error-correcting code memory (ECC),

128
errors

large integer arithmetic, 244
PIN code, 222
protocols, 221–222
timing attacks, 221–222
wooping, 247

ethics, trust, 214
Euclid, 165

extended Euclidian algorithm,
171–172

European Committee for
Standardization (CEN), 317

even permutations, 49
ideal block ciphers, 50

events
accumulator, 151
pools, 150–151

randomness, 154–155
evolving systems, security, 17–18
exception handling, 122
exclusive-or operation (XOR), 51

MAC, 93
memory, 126
modulo 2, 172–173
storage, 126
stream cipher, 69

execution states, protocols, 221
exhaustive search attack, 36

DES, 53
hash functions, 84

expiration time
certificates, 279
clock, 260
keys, 278–279, 299
public keys, 278–279

exponentiations, 179
CRT, 198

extended Euclidean algorithm,
171–172

extendedGCD, 171–172
RSA, 200

F
failure rate, adversarial setting,

244
fast expiration, CA, 290–291
FEAL, 55
Feistel construction, 52

Twofish, 57
Ferguson, Niels, 5, 11, 112, 132, 191,

222, 240, 260
Fermat test, 177
56-bits, DES, 51
file system updates, atomicity, 158
finally, 122
fingerprint, 77
fingerprint scanners, 308–309
finite fields, 169–170
firewall, LAN, 10
512-bit, 79

344 Index ■ F–I

fixed IV, 66
floating point registers, 127
Fortuna, 142
forward secrets, 238
Foundations of Cryptography

(Goldreich), 18
functional specification, 117
fundamental theorem of arithmetic,

165

G
garbage collection, 122
Garner’s formula, 196–197
GCD. See greatest common divisor
GCM, 71

GMAC, 113
GenerateBlocks, 146–147
GenerateLargePrime, 174,

203
generateRSAKey, 204–205
generateRSAPrime, 203–204
generator. See also pseudorandom

number generators; random
number generators

pools, 151
randomness, 143–147
reseeds, 152
speed, 147

generic attacks, 14
block ciphers, 47
hash functions, 79

GMAC, 94–95
authentication, 94
GCM, 113
interface, 94

Goldbach conjecture, 165
Goldreich, Oded, 18
greatest common divisor (GCD),

170–171
groups, 169–170

DH, 182–183
Gutmann, Peter, 312

H
Handbook of Applied Cryptography

(Menezes, van Oorschot, and
Vanstone), 18, 243

hard drive, secrets, 301
hash functions, 77–88

attacks, 79
birthday attacks, 84
block ciphers, 45
collisions, 84
CPU, 152
exhaustive search attack, 84
generic attacks, 79
ideal, 79, 151
iterative, 80, 93
length extension bug, 83–84
NIST, 78
partial-message collision, 84
pools, 152
random mapping, 84, 207
security, 78–79
testing, 244
universal, 94, 112–113
weaknesses, 83–87

Hellman, Martin, 181
HMAC, 86, 93–94

birthday attacks, 93
iterative hash functions, 93
key recovery attacks, 93
SHA-1, 93

Horton Principle, 96–97
message identifiers, 220

Housley, Russ, 112
human memory

passwords, 302–303
secrets, 302–306

I
iButton, 306
IDEA, 55

side-channel attacks, 250

Index ■ I–K 345

ideals
block ciphers, 46–50
hash functions, 79
MAC, 90

identifiers
messages, 253–254
protocols, 253–254

IEEE. See Electrical and Electronics
Engineers

IETF. See Internet Engineering Task
Force

IKE. See Internet Key Exchange
implementation, 115–134

design, 117
incentive, protocols, 215–217
indirect authorization, 285
information leakage, 33, 72–75

DH, 248
initialization

AES, 132
secure channel, 107–108
SSL, 37

initialization vector, 66
InitializeGenerator, 145
InitializePRNG, 153
InitializeSecureChannel, 113
insiders, 10
instance identifiers, protocols, 253–254
interface

block ciphers, 45
GMAC, 94

International Organization for
Standardization (ISO), 317

Internet Engineering Task Force
(IETF), 317, 321

Internet Key Exchange (IKE), 191–192
Introduction to Modern Cryptography

(Katz and Lindell), 18
IPsec, 101

message order, 111
iris scanners, 308–309
ISO. See International Organization for

Standardization

ISO 9001, 119
isPrime, 175, 187
iterative hash functions, 80, 151

HMAC, 93

J
Java, 122

K
Kahn, David, 18
Katz, Jonathan, 18
Kelsey, John, 141
Kerberos, 270–271, 273
Kerckhoff’s principle, 24–25

algorithms, 44
block ciphers, 44

key(s). See also specific key types
compromise of, 238
expiration time, 299
key servers, 272
phases of, 297–298
secure channel, 100
64-bit, 34–35

key negotiation, 227–242, 272
authentication, 227–228
passwords, 228, 241
secret keys, 228

key recovery attacks, HMAC, 93
key servers, 269–274

CRL, 292–293
keys, 272
PKI, 292–293
rekeying, 272–273
secure channel, 272

keystrokes
entropy, 147–148
randomness, 138

known-plaintext attack, 31
distinguishers, 48

Knuth, Donald E., 140
Kohno, Tadayoshi, 112

346 Index ■ L–M

L
LAN, firewall, 10
large integer arithmetic, 243–249

errors, 244
side-channel attacks, 245
wooping, 246

law, trust, 214
LCM. See least common multiple
least common multiple (LCM), 171
Legendre symbol, 187
length extension bug, hash functions,

83–84
liability

CA, 30
VeriSign, 30

Lindell, Yehuda, 18
local time, 266
long-term card key, 240

M
MAC. See message authentication code
MAD. See Mutually Assured

Destruction
man-in-the-middle attack, DH,

184–185
MARS, 58

side-channel attacks, 250
mathematics, 75

RSA, 205
MD4, 81
MD5, 81
meet-in-the-middle attacks, 34–35

birthday attacks, 35
memory

human, 302–306
secrets, 125–127
XOR, 126

memset, 121
Menezes, A.J., 18, 243
message authentication code (MAC),

26–27, 89–98
attacks, 90
authentication, 96, 102–104, 106
CBC, 91–93

data integrity, 127
encryption, 102–104
ideal, 90
meet-in-the-middle attacks, 35
passwords, 241
random mapping, 90, 93
security, 90
tags, 89, 103
XOR, 93

message digest functions. See hash
functions

message identifiers
Horton Principle, 220
protocols, 219–220

message numbers, 26–27, 102
secure channel, 105

message order
authentication, 26
secure channel, 111–112

messages
authentication, 229
encoding, 220
identifiers, 253–254
parsing, 220
protocols, 218–225, 253–255
secure channel, 100–101, 108–109
TCP, 219

MinPoolSize, 154
modular addition, 246
modular multiplication, 246
modularization, 129–130

protocols, 218, 240–241, 273
modulo

addition, 168–169
multiplication, 169, 249–250
primes, 167–173
subtraction, 168–169
wooping, 245

modulo 2, 172–173
modulo n, 199–200
monotonicity, clock, 260
Monte Carlo simulation, 144
Montgomery multiplication, 179,

249–250

Index ■ M–P 347

Moore’s law, 305
mouse movements, entropy, 147–148
MsgCntSend, 109
MsgToRSANumber, 209–210
multilevel certificates, 277–278
multiplication

CPU, 251
CRT, 198
modular, 246
modulo, 169, 249–250
Montgomery, 179

multiplicative group modulo p, 170
Mutually Assured Destruction

(MAD), 214

N
names, PKI, 281–283
National Institute of Standards and

Technology (NIST), 54
hash functions, 78
primes, 193
SHA, 82

network security, 14
NIST. See National Institute of

Standards and Technology
nonce-generated IV, 67–68

GMAC, 94
nonrepudiation, 293
NSA, 80

SHA, 82
NTP, 264

O
OCB, 112–113
OCSP. See Online Certificate Status

Protocol
odd permutations, 49
OFB. See output feedback
offline

chosen-plaintext attack, 32
dictionary attack, 241

128-bit, 60
AES, 54

block ciphers, 43
GMAC, 94
MD5, 81
passwords, 302
security, 36

160-bit, 82
192-bit, 60
online

certificate verification, 291
chosen-plaintext attack, 32

Online Certificate Status Protocol
(OCSP), 291

output feedback (OFB), 68–69
information leakage, 73

overwriting data, 312–313

P
padding

block cipher mode, 64–65
RSA, 205–206

paranoia, 8
exercises, 18–21
protocols, 218

parity, permutations, 49–50
parity attacks, 49
parsing, messages, 220
partial-message collision, hash

functions, 84
passphrases, 303
Password Safe, 309
passwords, 6

dictionary attack, 228
entropy, 302
human memory, 302–303
key negotiation, 228, 241
MAC, 241
128-bit, 302
salting, 304–306
64-bit, 303
stretching, 304–306
256-bit, 302

patents, 322
PayPal, phishing, 218
PC Card, 306

348 Index ■ P

PDA, secrets, 301
performance, security, 14–17, 37
permutations

block ciphers, 44, 46
even, 49, 50
odd, 49
parity, 49–50

phishing, PayPal, 218
PHT, 57
physical threat, trust, 214
PIN code

ATM, 288
credit cards, 11
errors, 222
secure token, 307–308
SET, 11

PKCS#1 v2.1, 206
PKI. See public key infrastructure
plaintext, 24

attacks, 69
block cipher mode, 64
block ciphers, 43, 49–50
ciphertext c, 64

pools
accumulator, 151
entropy, 149
events, 150–151
generator, 151
hash functions, 152
randomness, 148–150
reseeds, 149

portable storage, 306
powers, 179
prevention, security, 16
primes, 163–180

algorithms, 164
divisibility, 163–166
large, 173–179
modulo, 167–173
NIST, 193
primitive elements, 173
safe, 186–187
small, 166–167
testing, 176–178

256-bit, 190
wooping, 245

primitive elements, 17, 36, 44, 64, 93,
100, 182

primes, 173
privacy, storage, 283
private keys, 202–203
PRNGs. See pseudorandom number

generators
probabilities, 75
professional paranoia, 8

exercises, 18–21
protocols, 218

proof by contradiction, 165
proof of security, 299
protocols, 213–225. See also specific

protocols
authentication, 97
complexity, 238–241
errors, 221–222
execution states, 221
identifiers, 253–254
incentive, 215–217
instance identifiers, 253–254
message identifiers, 219–220
messages, 218–225, 253–255
modularization, 218, 240–241, 273
paranoia, 218
professional paranoia, 218
roles, 213–214
secure channel, 253
smart cards, 240
steps, 218–225
timeouts, 255
trust, 214–215, 217–218
versions, 229–230

pseudorandom data, 140
pseudorandom function, 143–147
pseudorandom number generators

(PRNGs), 140–142
PseudoRandomData, 146–147, 152
public exponents, RSA, 201–202
public key(s)

algorithms, 28

Index ■ P–R 349

authentication, 189
DH, 239
digital signature, 29, 30
efficiency, 28
encryption, 27–29, 189
expiration time, 278–279
PKI, 275–276
primes, 163–180
RSA, 239
secret keys, 28, 275–276
SSL, 37
symmetric keys, 29, 188–189
timing attacks, 250–251

public key infrastructure (PKI), 29–30
authorization, 285–286
CA, 275–276, 283–285
certificates, 275, 277–278, 295–297
clock, 264
credential systems, 286–288
dream of, 275–280
key servers, 292–293
names, 281–283
practicalities, 295–300
public keys, 275–276
reality of, 281–294
refinery sensors, 277
revocation, 289–292
secret keys, 275–276
SSL, 321
trust, 284–285
universal, 276, 284
VPN, 276

Q
quantum physics, attacks, 139

R
RA. See Registration Authority
Rabin-Miller test, 175–178
random delay, 251
random IV, 66–67
random mapping

hash functions, 84, 207

MAC, 90, 93
random number generators, 139

same-state problem, 265
RandomData, 152, 153
randomness, 137–161

accumulator, 147–155
events, 154–155
generator, 143–147
keystrokes, 138
pools, 148–150
secret keys, 12

RC4, 323–324
RC6, 58
real-time clock chip, 261

same-state problem, 265
real-time transactions, clock, 260–261
ReceiveMessage, 110–111
reductio ad absurdum (proof by

contradiction), 165
refinery sensors, PKI, 277
registers, CPU, 127
Registration Authority (RA), CA,

279–280
rekeying, key servers, 272–273
related-key attack, 45
replay attacks, 223–225
reputation, trust, 214
requirements, 117
ReseedCnt, 154
reseeds, 145

generator, 152
pools, 149

resends
secure channel, 102
timing of, 255

response, security, 16
retry attacks, 223–225

TCP, 223
UDP packets, 223

revocation, PKI, 289–292
RF

attacks, 252
side-channel attacks, 132

350 Index ■ R–S

Rijndael, 54
randomness generator, 143

risk, trust, 215
Rivest, Ron, 81, 195
roles

protocols, 213–214
secure channel, 99–100

root key, CA, 293, 296–297
rounds

AES, 54–55
block ciphers, 50–51
DES, 51–52

RSA, 195–211
AES, 205
attacks, 205
decryption, 207–208, 251
digital signature, 200
encryption, 206–209, 248
extendedGCD, 200
mathematics, 205
padding, 205–206
pitfalls, 205–206
public exponents, 201–202
public keys, 239
signatures, 239, 248
SSL, 251
symmetric keys, 302
testing, 248–249

RSA-OAEP, 206
RSA-PSS, 206

S
safe primes

DH, 186–187
efficiency, 187

salting, passwords, 304–306
same-state problem, 265–266
S-box. See substitution box
Schilder, Marius, 240
Schneier, Bruce, 18, 323, 326
secret keys

authentication, 26
block ciphers, 43
encryption, 24

key negotiation, 228
management, 14
PKI, 275–276
public keys, 28, 275–276
randomness, 12
secure tokens, 307
storage, 12, 14
256-bit, 306

secrets, 120–128
cache, 124
CPU, 122
forward, 238
hard drive, 301
human memory, 302–306
memory, 125–127
PDA, 301
secure channel, 101–102, 120
sharing, 310–311
smart phones, 301
storage, 301–314
swap files, 122–124
virtual memory, 122–124
wiping state, 311–313

Secrets and Lies (Scheier), 18, 326
secure channel, 99–114

algorithms, 107–112
authentication, 102–104, 106
encryption, 102–104, 106–107
initialization, 107–108
key servers, 272
keys, 100
message numbers, 105
message order, 111–112
messages, 100–101, 108–109
properties, 101–102
protocols, 253
resends, 102
roles, 99–100
secrets, 101–102, 120

Secure Hash Algorithm (SHA), 79, 82
secure tokens, 306–308

PIN code, 307–308
secret keys, 307

secure UI, 307–308

Index ■ S 351

security
clock, 262–263
complexity, 129
detection, 16
evolving systems, 17–18
features, 17
hash functions, 78–79
level, 36
MAC, 90
mindset, 8
128-bit, 36
performance, 14–17, 37
prevention, 16
response, 16
reviews, 20–21
standards, 320
weakest link, 5–7

Security Engineering (Anderson), 18
seed files, 155–159
self-certifying certificate, 296
SendMessage, 109
sequences, 27
Serpent, 56–57

randomness generator, 143
session keys, 228

authentication, 229
SET

credit cards, 10–11
digital signature, 11
PIN code, 11
viruses, 11

SHA. See Secure Hash Algorithm
SHA-0, 82
SHA-1, 79, 82

HMAC, 93
SHA-2, fixes for, 85–87
SHA-3, 78, 79–80
SHA-224, 82–83
SHA-256, 79, 82–83
SHA-384, 79, 82–83
SHA-512, 79, 82–83
Shamir, Adi, 195
side-channel attacks, 33, 132–133,

250–252

countermeasures, 251–252
IDEA, 250
large integer arithmetic, 245
MARS, 250
RF, 132

signatures. See also digital signature
blind, 252
CRT, 239
RSA, 209–211, 239, 248

SignWithRSA, 210
simplicity, 129
single sign-on, 309
64-bit

DES, 52
encryption, 106
keys, 34–35
message numbers, 105
passwords, 303

SmallPrimeList, 166
smart cards, 222, 306

protocols, 240
smart phones, secrets, 301
SNTP, 264
Social Security number (SSN), 283
SoFi number, 283
software bugs, 14
specifications, 117–118
splitting operations, 110
SRAM. See Static RAM
SRP, 241
SSH, 101
SSL

certificates, 218
initialization, 37
PKI, 321
public keys, 37
RSA, 251
standards, 320–321

SSL/TLS, 101
SSN. See Social Security number
standards, 317–322

security, 320
SSL, 320–321

start-of-protocol attack, 255

352 Index ■ S–T

Static RAM (SRAM), 125
Station-to-Station protocol, DH, 228
steps

attacks, 36
protocols, 218–225

storage
encryption, 24
portable, 306
privacy, 283
secret keys, 12, 14
secrets, 301–314
XOR, 126

stream cipher, 68
collision attacks, 69
XOR, 69

stretching, passwords, 304–306
STU-III, 290
subgroups, DH, 187–188, 191
subsequences, 27
substitution box (S-box), 52

AES, 54
Twofish, 57

subtraction, modulo, 168–169
Sun Tzu, 196
superusers, 127, 128
swap files, secrets, 122–124
symmetric keys

authentication, 239
encryption, 28
public keys, 29, 188–189
RSA, 302

SYN flood attack, 255
System.gc(), 122
System.runFinalization(), 122

T
Tag-Length-Value (TLV), 220
tags, MAC, 89, 103
TCP

messages, 219
retry attacks, 223

TCP/IP, 101
message order, 112

test-and-fix

complexity, 37–38
correct programs, 118

testing, 13, 131–132
AES, 244
block ciphers, 244
DH, 248
Fermat, 177
hash functions, 244
primes, 176–178
Rabin-Miller, 175–178
RSA, 248–249

32-bit
encryption, 106–107
MD4, 81
message numbers, 105
SHA-1, 82

threat model, 10–12
time, clock, 266–267
time server, 264
time stamps, 260
time synchronization, clock, 264
timeouts, protocols, 255
timing attacks

errors, 221–222
public keys, 250–251

TLS, 321
TLV. See Tag-Length-Value
traffic analysis, 101
transient secrets, 120
transport layer, 219
trust

CA, 30
ethics, 214
law, 214
MAD, 214
physical threat, 214
PKI, 284–285
protocols, 214–215, 217–218
reputation, 214
risk, 215

try-finally, 122
256-bit, 60

block ciphers, 43
passwords, 302

Index ■ T–Z 353

primes, 190
secret keys, 306

Twofish, 45, 57–58
randomness generator, 143

U
UDP packets, 219

retry attacks, 223
uncertainty, 137
unique value, clock, 260
universal hash function, 94

CWC, 112–113
universal PKI, 276, 284
UNIX, 127
UpdateSeedFile, 156
USB dongle, 306
USB stick, 12

storage, 306
UTC, 267

V
van Oorschot, Paul C., 18, 243
Vanstone, S.A., 18, 243
VerifyRSASignature, 210
VeriSign, liability, 30
version-rollback attack, 230
versions, protocols, 229–230
Viega, John, 112
virtual machines (VMs), 141–142

backups, 157–158
virtual memory, secrets, 122–124
virtual private network (VPN), PKI,

276
viruses

credit cards, 11
SET, 11

VMs. See virtual machines
VPN. See virtual private network

W
weakest link, security, 5–7
WEP. See wired equivalent privacy
whitening, 57
Whiting, Doug, 112
wiping state, 121–122

secrets, 311–313
wired equivalent privacy (WEP),

323–324
wooping, 245–248

algorithms, 246
errors, 247
large integer arithmetic, 246
modulo, 245
primes, 245

WriteSeedFile, 156

X
XML, 221, 295
XOR. See exclusive-or operation
X.509v3, 279, 295

Y
Yarrow, 141

Z
Zener diode, 139

	Cryptography Engineering: Design Principles and Practical Applications
	Credits
	About the Authors
	Acknowledgments for Cryptography Engineering
	Acknowledgments for Practical Cryptography (the 1st Edition)
	Contents at a Glance
	Contents
	Preface to Cryptography Engineering
	History
	Example Syllabi
	Additional Information

	Preface to Practical Cryptography (the 1st Edition)
	How to Read this Book

	Part I: Introduction
	In This Part
	Chapter 1: The Context of Cryptography
	1.1: The Role of Cryptography
	1.2: The Weakest Link Property
	1.3: The Adversarial Setting
	1.4: Professional Paranoia
	1.4.1: Broader Benefits
	1.4.2: Discussing Attacks

	1.5: Threat Model
	1.6: Cryptography Is Not the Solution
	1.7: Cryptography Is Very Difficult
	1.8: Cryptography Is the Easy Part
	1.9: Generic Attacks
	1.10: Security and Other Design Criteria
	1.10.1: Security Versus Performance
	1.10.2: Security Versus Features
	1.10.3: Security Versus Evolving Systems

	1.11: Further Reading
	1.12: Exercises for Professional Paranoia
	1.12.1: Current Event Exercises
	1.12.2: Security Review Exercises

	1.13: General Exercises

	Chapter 2: Introduction to Cryptography
	2.1: Encryption
	2.1.1: Kerckhoffs' Principle

	2.2: Authentication
	2.3: Public-Key Encryption
	2.4: Digital Signatures
	2.5: PKI
	2.6: Attacks
	2.6.1: The Ciphertext-Only Model
	2.6.2: The Known-Plaintext Model
	2.6.3: The Chosen-Plaintext Model
	2.6.4: The Chosen-Ciphertext Model
	2.6.5: The Distinguishing Attack Goal
	2.6.6: Other Types of Attack

	2.7: Under the Hood
	2.7.1: Birthday Attacks
	2.7.2: Meet-in-the-Middle Attacks

	2.8: Security Level
	2.9: Performance
	2.10: Complexity
	2.11: Exercises

	Part II: Message Security
	Chapter 3: Block Ciphers
	3.1: What Is a Block Cipher?
	3.2: Types of Attack
	3.3: The Ideal Block Cipher
	3.4: Definition of Block Cipher Security
	3.4.1: Parity of a Permutation

	3.5: Real Block Ciphers
	3.5.1: DES
	3.5.2: AES
	3.5.3: Serpent
	3.5.4: Twofish
	3.5.5: Other AES Finalists
	3.5.6: Which Block Cipher Should I Choose?
	3.5.7: What Key Size Should I Use?

	3.6: Exercises

	Chapter 4: Block Cipher Modes
	4.1: Padding
	4.2: ECB
	4.3: CBC
	4.3.1: Fixed IV
	4.3.2: Counter IV
	4.3.3: Random IV
	4.3.4: Nonce-Generated IV

	4.4: OFB
	4.5: CTR
	4.6: Combined Encryption and Authentication
	4.7: Which Mode Should I Use?
	4.8: Information Leakage
	4.8.1: Chances of a Collision
	4.8.2: How to Deal With Leakage
	4.8.3: About Our Math

	4.9: Exercises

	Chapter 5: Hash Functions
	5.1: Security of Hash Functions
	5.2: Real Hash Functions
	5.2.1: A Simple But Insecure Hash Function
	5.2.2: MD5
	5.2.3: SHA-1
	5.2.4: SHA-224, SHA-256, SHA-384, and SHA-512

	5.3: Weaknesses of Hash Functions
	5.3.1: Length Extensions
	5.3.2: Partial-Message Collision

	5.4: Fixing the Weaknesses
	5.4.1: Toward a Short-term Fix
	5.4.2: A More Efficient Short-term Fix
	5.4.3: Another Fix

	5.5: Which Hash Function Should I Choose?
	5.6: Exercises

	Chapter 6: Message Authentication Codes
	6.1: What a MAC Does
	6.2: The Ideal MAC and MAC Security
	6.3: CBC-MAC and CMAC
	6.4: HMAC
	6.5: GMAC
	6.6: Which MAC to Choose?
	6.7: Using a MAC
	6.8: Exercises

	Chapter 7: The Secure Channel
	7.1: Properties of a Secure Channel
	7.1.1: Roles
	7.1.2: Key
	7.1.3: Messages or Stream
	7.1.4: Security Properties
	7.2: Order of Authentication and Encryption
	7.3: Designing a Secure Channel: Overview
	7.3.1: Message Numbers
	7.3.2: Authentication
	7.3.3: Encryption
	7.3.4: Frame Format

	7.4: Design Details
	7.4.1: Initialization
	7.4.2: Sending a Message
	7.4.3: Receiving a Message
	7.4.4: Message Order

	7.5: Alternatives
	7.6: Exercises

	Chapter 8: Implementation Issues (I)
	8.1: Creating Correct Programs
	8.1.1: Specifications
	8.1.2: Test and Fix
	8.1.3: Lax Attitude
	8.1.4: So How Do We Proceed?

	8.2: Creating Secure Software
	8.3: Keeping Secrets
	8.3.1: Wiping State
	8.3.2: Swap File
	8.3.3: Caches
	8.3.4: Data Retention by Memory
	8.3.5: Access by Others
	8.3.6: Data Integrity
	8.3.7: What to Do

	8.4: Quality of Code
	8.4.1: Simplicity
	8.4.2: Modularization
	8.4.3: Assertions
	8.4.4: Buffer Overflows
	8.4.5: Testing

	8.5: Side-Channel Attacks
	8.6: Beyond this Chapter
	8.7: Exercises

	Part III: Key Negotiation
	Chapter 9: Generating Randomness
	9.1: Real Random
	9.1.1: Problems With Using Real Random Data
	9.1.2: Pseudorandom Data
	9.1.3: Real Random Data and PRNGS

	9.2: Attack Models for a PRNG
	9.3: Fortuna
	9.4: The Generator
	9.4.1: Initialization
	9.4.2: Reseed
	9.4.3: Generate Blocks
	9.4.4: Generate Random Data
	9.4.5: Generator Speed

	9.5: Accumulator
	9.5.1: Entropy Sources
	9.5.2: Pools
	9.5.3: Implementation Considerations
	9.5.3.1: Distribution of Events Over Pools
	9.5.3.2: Running Time of Event Passing

	9.5.4: Initialization
	9.5.5: Getting Random Data
	9.5.6: Add an Event

	9.6: Seed File Management
	9.6.1: Write Seed File
	9.6.2: Update Seed File
	9.6.3: When to Read and Write the Seed File
	9.6.4: Backups and Virtual Machines
	9.6.5: Atomicity of File System Updates
	9.6.6: First Boot

	9.7: Choosing Random Elements
	9.8: Exercises

	Chapter 10: Primes
	10.1: Divisibility and Primes
	10.2: Generating Small Primes
	10.3: Computations Modulo a Prime
	10.3.1: Addition and Subtraction
	10.3.2: Multiplication
	10.3.3: Groups and Finite Fields
	10.3.4: The GCD Algorithm
	10.3.5: The Extended Euclidean Algorithm
	10.3.6: Working Modulo 2

	10.4: Large Primes
	10.4.1: Primality Testing
	10.4.2: Evaluating Powers

	10.5: Exercises

	Chapter 11: Diffie-Hellman
	11.1: Groups
	11.2: Basic DH
	11.3: Man in the Middle
	11.4: Pitfalls
	11.5: Safe Primes
	11.6: Using a Smaller Subgroup
	11.7: The Size of p
	11.8: Practical Rules
	11.9: What Can Go Wrong?
	11.10: Exercises

	Chapter 12: RSA
	12.1: Introduction
	12.2: The Chinese Remainder Theorem
	12.2.1: Garner's Formula
	12.2.2: Generalizations
	12.2.3: Uses
	12.2.4: Conclusion

	12.3: Multiplication Modulo n
	12.4: RSA Defined
	12.4.1: Digital Signatures with RSA
	12.4.2: Public Exponents
	12.4.3: The Private Key
	12.4.4: The Size of n
	12.4.5: Generating RSA Keys

	12.5: Pitfalls Using RSA
	12.6: Encryption
	12.7: Signatures
	12.8: Exercises

	Chapter 13: Introduction to Cryptographic Protocols
	13.1: Roles
	13.2: Trust
	13.2.1: Risk

	13.3: Incentive
	13.4: Trust in Cryptographic Protocols
	13.5: Messages and Steps
	13.5.1: The Transport Layer
	13.5.2: Protocol and Message Identity
	13.5.3: Message Encoding and Parsing
	13.5.4: Protocol Execution States
	13.5.5: Errors
	13.5.6: Replay and Retries

	13.6: Exercises

	Chapter 14: Key Negotiation
	14.1: The Setting
	14.2: A First Try
	14.3: Protocols Live Forever
	14.4: An Authentication Convention
	14.5: A Second Attempt
	14.6: A Third Attempt
	14.7: The Final Protocol
	14.8: Different Views of the Protocol
	14.8.1: Alice's View
	14.8.2: Bob's View
	14.8.3: Attacker's View
	14.8.4: Key Compromise

	14.9: Computational Complexity of the Protocol
	14.9.1: Optimization Tricks

	14.10: Protocol Complexity
	14.11: A Gentle Warning
	14.12: Key Negotiation from a Password
	14.13: Exercises

	Chapter 15: Implementation Issues (II)
	15.1: Large Integer Arithmetic
	15.1.1: Wooping
	15.1.2: Checking DH Computations
	15.1.3: Checking RSA Encryption
	15.1.4: Checking RSA Signatures
	15.1.5: Conclusion

	15.2: Faster Multiplication
	15.3: Side-Channel Attacks
	15.3.1: Countermeasures

	15.4: Protocols
	15.4.1: Protocols Over a Secure Channel
	15.4.2: Receiving a Message
	15.4.3: Timeouts

	15.5: Exercises

	Part IV: Key Management
	Chapter 16: The Clock
	16.1: Uses for a Clock
	16.1.1: Expiration
	16.1.2: Unique Value
	16.1.3: Monotonicity
	16.1.4: Real-Time Transactions

	16.2: Using the Real-Time Clock Chip
	16.3: Security Dangers
	16.3.1: Setting the Clock Back
	16.3.2: Stopping the Clock
	16.3.3: Setting the Clock Forward

	16.4: Creating a Reliable Clock
	16.5: The Same-State Problem
	16.6: Time
	16.7: Closing Recommendations
	16.8: Exercises

	Chapter 17: Key Servers
	17.1: Basics
	17.2: Kerberos
	17.3: Simpler Solutions
	17.3.1: Secure Connection
	17.3.2: Setting Up a Key
	17.3.3: Rekeying
	17.3.4: Other Properties

	17.4: What to Choose
	17.5: Exercises

	Chapter 18: The Dream of PKI
	18.1: A Very Short PKI Overview
	18.2: PKI Examples
	18.2.1: The Universal PKI
	18.2.2: VPN Access
	18.2.3: Electronic Banking
	18.2.4: Refinery Sensors
	18.2.5: Credit Card Organization

	18.3: Additional Details
	18.3.1: Multilevel Certificates
	18.3.2: Expiration
	18.3.3: Separate Registration Authority

	18.4: Summary
	18.5: Exercises

	Chapter 19: PKI Reality
	19.1: Names
	19.2: Authority
	19.3: Trust
	19.4: Indirect Authorization
	19.5: Direct Authorization
	19.6: Credential Systems
	19.7: The Modified Dream
	19.8: Revocation
	19.8.1: Revocation List
	19.8.2: Fast Expiration
	19.8.3: Online Certificate Verification
	19.8.4: Revocation Is Required

	19.9: So What Is a PKI Good For?
	19.10: What to Choose
	19.11: Exercises

	Chapter 20: PKI Practicalities
	20.1: Certificate Format
	20.1.1: Permission Language
	20.1.2: The Root Key

	20.2: The Life of a Key
	20.3: Why Keys Wear Out
	20.4: Going Further
	20.5: Exercises

	Chapter 21: Storing Secrets
	21.1: Disk
	21.2: Human Memory
	21.2.1: Salting and Stretching

	21.3: Portable Storage
	21.4: Secure Token
	21.5: Secure UI
	21.6: Biometrics
	21.7: Single Sign-On
	21.8: Risk of Loss
	21.9: Secret Sharing
	21.10: Wiping Secrets
	21.10.1: Paper
	21.10.2: Magnetic Storage
	21.10.3: Solid-State Storage

	21.11: Exercises

	Part V: Miscellaneous
	Chapter 22: Standards and Patents
	22.1: Standards
	22.1.1: The Standards Process
	22.1.1.1: The Standard
	22.1.1.2: Functionality
	22.1.1.3: Security

	22.1.2: SSL
	22.1.3: AES: Standardization by Competition

	22.2: Patents

	Chapter 23: Involving Experts

	Bibliography
	Index

